Metamath Proof Explorer


Theorem ralimd6vOLD

Description: Obsolete version of ralimdvv as of 18-Nov-2025. (Contributed by Scott Fenton, 2-Mar-2025) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis ralim6dvOLD.1 φ ψ χ
Assertion ralimd6vOLD φ x A y B z C w D p E q F ψ x A y B z C w D p E q F χ

Proof

Step Hyp Ref Expression
1 ralim6dvOLD.1 φ ψ χ
2 1 ralimdvvOLD φ p E q F ψ p E q F χ
3 2 ralimd4vOLD φ x A y B z C w D p E q F ψ x A y B z C w D p E q F χ