Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
ralimd6vOLD
Metamath Proof Explorer
Description: Obsolete version of ralimdvv as of 18-Nov-2025. (Contributed by Scott
Fenton , 2-Mar-2025) (New usage is discouraged.)
(Proof modification is discouraged.)
Ref
Expression
Hypothesis
ralim6dvOLD.1
⊢ φ → ψ → χ
Assertion
ralimd6vOLD
⊢ φ → ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C ∀ w ∈ D ∀ p ∈ E ∀ q ∈ F ψ → ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C ∀ w ∈ D ∀ p ∈ E ∀ q ∈ F χ
Proof
Step
Hyp
Ref
Expression
1
ralim6dvOLD.1
⊢ φ → ψ → χ
2
1
ralimdvvOLD
⊢ φ → ∀ p ∈ E ∀ q ∈ F ψ → ∀ p ∈ E ∀ q ∈ F χ
3
2
ralimd4vOLD
⊢ φ → ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C ∀ w ∈ D ∀ p ∈ E ∀ q ∈ F ψ → ∀ x ∈ A ∀ y ∈ B ∀ z ∈ C ∀ w ∈ D ∀ p ∈ E ∀ q ∈ F χ