Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
ralimdv2
Next ⟩
reximdv2
Metamath Proof Explorer
Ascii
Unicode
Theorem
ralimdv2
Description:
Inference quantifying both antecedent and consequent.
(Contributed by
NM
, 1-Feb-2005)
Ref
Expression
Hypothesis
ralimdv2.1
⊢
φ
→
x
∈
A
→
ψ
→
x
∈
B
→
χ
Assertion
ralimdv2
⊢
φ
→
∀
x
∈
A
ψ
→
∀
x
∈
B
χ
Proof
Step
Hyp
Ref
Expression
1
ralimdv2.1
⊢
φ
→
x
∈
A
→
ψ
→
x
∈
B
→
χ
2
1
alimdv
⊢
φ
→
∀
x
x
∈
A
→
ψ
→
∀
x
x
∈
B
→
χ
3
df-ral
⊢
∀
x
∈
A
ψ
↔
∀
x
x
∈
A
→
ψ
4
df-ral
⊢
∀
x
∈
B
χ
↔
∀
x
x
∈
B
→
χ
5
2
3
4
3imtr4g
⊢
φ
→
∀
x
∈
A
ψ
→
∀
x
∈
B
χ