Metamath Proof Explorer


Theorem ralimdv2

Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005)

Ref Expression
Hypothesis ralimdv2.1 φ x A ψ x B χ
Assertion ralimdv2 φ x A ψ x B χ

Proof

Step Hyp Ref Expression
1 ralimdv2.1 φ x A ψ x B χ
2 1 alimdv φ x x A ψ x x B χ
3 df-ral x A ψ x x A ψ
4 df-ral x B χ x x B χ
5 2 3 4 3imtr4g φ x A ψ x B χ