Metamath Proof Explorer


Theorem ralimdvv

Description: Deduction doubly quantifying both antecedent and consequent. (Contributed by Scott Fenton, 2-Mar-2025) Shorten and reduce DV conditions. (Revised by Eric Schmidt, 18-Nov-2025)

Ref Expression
Hypothesis ralimdvv.1 φ ψ χ
Assertion ralimdvv φ x A y B ψ x A y B χ

Proof

Step Hyp Ref Expression
1 ralimdvv.1 φ ψ χ
2 1 ralimdv φ y B ψ y B χ
3 2 ralimdv φ x A y B ψ x A y B χ