Metamath Proof Explorer


Theorem ralimdvvOLD

Description: Obsolete version of ralimdvv as of 18-Nov-2025. (Contributed by Scott Fenton, 2-Mar-2025) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypothesis ralimdvvOLD.1 φ ψ χ
Assertion ralimdvvOLD φ x A y B ψ x A y B χ

Proof

Step Hyp Ref Expression
1 ralimdvvOLD.1 φ ψ χ
2 1 adantr φ x A y B ψ χ
3 2 ralimdvva φ x A y B ψ x A y B χ