Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
ralimdvvOLD
Metamath Proof Explorer
Description: Obsolete version of ralimdvv as of 18-Nov-2025. (Contributed by Scott
Fenton , 2-Mar-2025) (New usage is discouraged.)
(Proof modification is discouraged.)
Ref
Expression
Hypothesis
ralimdvvOLD.1
⊢ φ → ψ → χ
Assertion
ralimdvvOLD
⊢ φ → ∀ x ∈ A ∀ y ∈ B ψ → ∀ x ∈ A ∀ y ∈ B χ
Proof
Step
Hyp
Ref
Expression
1
ralimdvvOLD.1
⊢ φ → ψ → χ
2
1
adantr
⊢ φ ∧ x ∈ A ∧ y ∈ B → ψ → χ
3
2
ralimdvva
⊢ φ → ∀ x ∈ A ∀ y ∈ B ψ → ∀ x ∈ A ∀ y ∈ B χ