Metamath Proof Explorer


Theorem ralimi2

Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 22-Feb-2004)

Ref Expression
Hypothesis ralimi2.1 x A φ x B ψ
Assertion ralimi2 x A φ x B ψ

Proof

Step Hyp Ref Expression
1 ralimi2.1 x A φ x B ψ
2 1 alimi x x A φ x x B ψ
3 df-ral x A φ x x A φ
4 df-ral x B ψ x x B ψ
5 2 3 4 3imtr4i x A φ x B ψ