Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
Restricted universal and existential quantification
ralimi2
Next ⟩
reximi2
Metamath Proof Explorer
Ascii
Unicode
Theorem
ralimi2
Description:
Inference quantifying both antecedent and consequent.
(Contributed by
NM
, 22-Feb-2004)
Ref
Expression
Hypothesis
ralimi2.1
⊢
x
∈
A
→
φ
→
x
∈
B
→
ψ
Assertion
ralimi2
⊢
∀
x
∈
A
φ
→
∀
x
∈
B
ψ
Proof
Step
Hyp
Ref
Expression
1
ralimi2.1
⊢
x
∈
A
→
φ
→
x
∈
B
→
ψ
2
1
alimi
⊢
∀
x
x
∈
A
→
φ
→
∀
x
x
∈
B
→
ψ
3
df-ral
⊢
∀
x
∈
A
φ
↔
∀
x
x
∈
A
→
φ
4
df-ral
⊢
∀
x
∈
B
ψ
↔
∀
x
x
∈
B
→
ψ
5
2
3
4
3imtr4i
⊢
∀
x
∈
A
φ
→
∀
x
∈
B
ψ