Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
ralimia
Next ⟩
ralimiaa
Metamath Proof Explorer
Ascii
Unicode
Theorem
ralimia
Description:
Inference quantifying both antecedent and consequent.
(Contributed by
NM
, 19-Jul-1996)
Ref
Expression
Hypothesis
ralimia.1
⊢
x
∈
A
→
φ
→
ψ
Assertion
ralimia
⊢
∀
x
∈
A
φ
→
∀
x
∈
A
ψ
Proof
Step
Hyp
Ref
Expression
1
ralimia.1
⊢
x
∈
A
→
φ
→
ψ
2
1
a2i
⊢
x
∈
A
→
φ
→
x
∈
A
→
ψ
3
2
ralimi2
⊢
∀
x
∈
A
φ
→
∀
x
∈
A
ψ