Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Restricted quantification
ralimiaa
Next ⟩
ralimi
Metamath Proof Explorer
Ascii
Unicode
Theorem
ralimiaa
Description:
Inference quantifying both antecedent and consequent.
(Contributed by
NM
, 4-Aug-2007)
Ref
Expression
Hypothesis
ralimiaa.1
⊢
x
∈
A
∧
φ
→
ψ
Assertion
ralimiaa
⊢
∀
x
∈
A
φ
→
∀
x
∈
A
ψ
Proof
Step
Hyp
Ref
Expression
1
ralimiaa.1
⊢
x
∈
A
∧
φ
→
ψ
2
1
ex
⊢
x
∈
A
→
φ
→
ψ
3
2
ralimia
⊢
∀
x
∈
A
φ
→
∀
x
∈
A
ψ