Metamath Proof Explorer


Theorem ralimralim

Description: Introducing any antecedent in a restricted universal quantification. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Assertion ralimralim x A φ x A ψ φ

Proof

Step Hyp Ref Expression
1 nfra1 x x A φ
2 rspa x A φ x A φ
3 ax-1 φ ψ φ
4 2 3 syl x A φ x A ψ φ
5 4 ex x A φ x A ψ φ
6 1 5 ralrimi x A φ x A ψ φ