Metamath Proof Explorer


Theorem ralin

Description: Restricted universal quantification over intersection. (Contributed by Peter Mazsa, 8-Sep-2023)

Ref Expression
Assertion ralin x A B φ x A x B φ

Proof

Step Hyp Ref Expression
1 elin x A B x A x B
2 1 imbi1i x A B φ x A x B φ
3 impexp x A x B φ x A x B φ
4 2 3 bitri x A B φ x A x B φ
5 4 ralbii2 x A B φ x A x B φ