Metamath Proof Explorer


Theorem ralinexa

Description: A transformation of restricted quantifiers and logical connectives. (Contributed by NM, 4-Sep-2005)

Ref Expression
Assertion ralinexa xAφ¬ψ¬xAφψ

Proof

Step Hyp Ref Expression
1 imnan φ¬ψ¬φψ
2 1 ralbii xAφ¬ψxA¬φψ
3 ralnex xA¬φψ¬xAφψ
4 2 3 bitri xAφ¬ψ¬xAφψ