Metamath Proof Explorer


Theorem ralnex2

Description: Relationship between two restricted universal and existential quantifiers. (Contributed by Glauco Siliprandi, 11-Dec-2019) (Proof shortened by Wolf Lammen, 18-May-2023)

Ref Expression
Assertion ralnex2 x A y B ¬ φ ¬ x A y B φ

Proof

Step Hyp Ref Expression
1 ralnex y B ¬ φ ¬ y B φ
2 1 ralbii x A y B ¬ φ x A ¬ y B φ
3 ralnex x A ¬ y B φ ¬ x A y B φ
4 2 3 bitri x A y B ¬ φ ¬ x A y B φ