Metamath Proof Explorer


Theorem ralnralall

Description: A contradiction concerning restricted generalization for a nonempty set implies anything. (Contributed by Alexander van der Vekens, 4-Sep-2018)

Ref Expression
Assertion ralnralall A x A φ x A ¬ φ ψ

Proof

Step Hyp Ref Expression
1 r19.26 x A φ ¬ φ x A φ x A ¬ φ
2 pm3.24 ¬ φ ¬ φ
3 2 bifal φ ¬ φ
4 3 ralbii x A φ ¬ φ x A
5 r19.3rzv A x A
6 falim ψ
7 5 6 syl6bir A x A ψ
8 4 7 syl5bi A x A φ ¬ φ ψ
9 1 8 syl5bir A x A φ x A ¬ φ ψ