Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Unordered and ordered pairs
ralpr
Metamath Proof Explorer
Description: Convert a restricted universal quantification over a pair to a
conjunction. (Contributed by NM , 3-Jun-2007) (Revised by Mario
Carneiro , 23-Apr-2015)
Ref
Expression
Hypotheses
ralpr.1
⊢ A ∈ V
ralpr.2
⊢ B ∈ V
ralpr.3
⊢ x = A → φ ↔ ψ
ralpr.4
⊢ x = B → φ ↔ χ
Assertion
ralpr
⊢ ∀ x ∈ A B φ ↔ ψ ∧ χ
Proof
Step
Hyp
Ref
Expression
1
ralpr.1
⊢ A ∈ V
2
ralpr.2
⊢ B ∈ V
3
ralpr.3
⊢ x = A → φ ↔ ψ
4
ralpr.4
⊢ x = B → φ ↔ χ
5
3 4
ralprg
⊢ A ∈ V ∧ B ∈ V → ∀ x ∈ A B φ ↔ ψ ∧ χ
6
1 2 5
mp2an
⊢ ∀ x ∈ A B φ ↔ ψ ∧ χ