Metamath Proof Explorer


Theorem ralpr

Description: Convert a restricted universal quantification over a pair to a conjunction. (Contributed by NM, 3-Jun-2007) (Revised by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypotheses ralpr.1 A V
ralpr.2 B V
ralpr.3 x = A φ ψ
ralpr.4 x = B φ χ
Assertion ralpr x A B φ ψ χ

Proof

Step Hyp Ref Expression
1 ralpr.1 A V
2 ralpr.2 B V
3 ralpr.3 x = A φ ψ
4 ralpr.4 x = B φ χ
5 3 4 ralprg A V B V x A B φ ψ χ
6 1 2 5 mp2an x A B φ ψ χ