Metamath Proof Explorer


Theorem ralrab

Description: Universal quantification over a restricted class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypothesis ralab.1 y = x φ ψ
Assertion ralrab x y A | φ χ x A ψ χ

Proof

Step Hyp Ref Expression
1 ralab.1 y = x φ ψ
2 1 elrab x y A | φ x A ψ
3 2 imbi1i x y A | φ χ x A ψ χ
4 impexp x A ψ χ x A ψ χ
5 3 4 bitri x y A | φ χ x A ψ χ
6 5 ralbii2 x y A | φ χ x A ψ χ