Metamath Proof Explorer


Theorem ralrexbid

Description: Formula-building rule for restricted existential quantifier, using a restricted universal quantifier to bind the quantified variable in the antecedent. (Contributed by AV, 21-Oct-2023) Reduce axiom usage. (Revised by SN, 13-Nov-2023) (Proof shortened by Wolf Lammen, 4-Nov-2024)

Ref Expression
Hypothesis ralrexbid.1 φ ψ θ
Assertion ralrexbid x A φ x A ψ x A θ

Proof

Step Hyp Ref Expression
1 ralrexbid.1 φ ψ θ
2 1 ralimi x A φ x A ψ θ
3 rexbi x A ψ θ x A ψ x A θ
4 2 3 syl x A φ x A ψ x A θ