Metamath Proof Explorer


Theorem ralrimd

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 16-Feb-2004)

Ref Expression
Hypotheses ralrimd.1 x φ
ralrimd.2 x ψ
ralrimd.3 φ ψ x A χ
Assertion ralrimd φ ψ x A χ

Proof

Step Hyp Ref Expression
1 ralrimd.1 x φ
2 ralrimd.2 x ψ
3 ralrimd.3 φ ψ x A χ
4 1 2 3 alrimd φ ψ x x A χ
5 df-ral x A χ x x A χ
6 4 5 syl6ibr φ ψ x A χ