Metamath Proof Explorer


Theorem ralrimdva

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008) (Proof shortened by Wolf Lammen, 28-Dec-2019)

Ref Expression
Hypothesis ralrimdva.1 φ x A ψ χ
Assertion ralrimdva φ ψ x A χ

Proof

Step Hyp Ref Expression
1 ralrimdva.1 φ x A ψ χ
2 1 expimpd φ x A ψ χ
3 2 expcomd φ ψ x A χ
4 3 ralrimdv φ ψ x A χ