Metamath Proof Explorer


Theorem ralrimdvv

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 1-Jun-2005)

Ref Expression
Hypothesis ralrimdvv.1 φ ψ x A y B χ
Assertion ralrimdvv φ ψ x A y B χ

Proof

Step Hyp Ref Expression
1 ralrimdvv.1 φ ψ x A y B χ
2 1 imp φ ψ x A y B χ
3 2 ralrimivv φ ψ x A y B χ
4 3 ex φ ψ x A y B χ