Metamath Proof Explorer


Theorem ralrimdvva

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 2-Feb-2008)

Ref Expression
Hypothesis ralrimdvva.1 φ x A y B ψ χ
Assertion ralrimdvva φ ψ x A y B χ

Proof

Step Hyp Ref Expression
1 ralrimdvva.1 φ x A y B ψ χ
2 1 ex φ x A y B ψ χ
3 2 com23 φ ψ x A y B χ
4 3 ralrimdvv φ ψ x A y B χ