Metamath Proof Explorer


Theorem ralrimdvva

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 2-Feb-2008)

Ref Expression
Hypothesis ralrimdvva.1 φxAyBψχ
Assertion ralrimdvva φψxAyBχ

Proof

Step Hyp Ref Expression
1 ralrimdvva.1 φxAyBψχ
2 1 ex φxAyBψχ
3 2 com23 φψxAyBχ
4 3 ralrimdvv φψxAyBχ