Metamath Proof Explorer


Theorem ralrimivv

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004)

Ref Expression
Hypothesis ralrimivv.1 φ x A y B ψ
Assertion ralrimivv φ x A y B ψ

Proof

Step Hyp Ref Expression
1 ralrimivv.1 φ x A y B ψ
2 1 expd φ x A y B ψ
3 2 ralrimdv φ x A y B ψ
4 3 ralrimiv φ x A y B ψ