Metamath Proof Explorer


Theorem ralrnmpt

Description: A restricted quantifier over an image set. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker ralrnmptw when possible. (Contributed by Mario Carneiro, 20-Aug-2015) (New usage is discouraged.)

Ref Expression
Hypotheses ralrnmpt.1 F = x A B
ralrnmpt.2 y = B ψ χ
Assertion ralrnmpt x A B V y ran F ψ x A χ

Proof

Step Hyp Ref Expression
1 ralrnmpt.1 F = x A B
2 ralrnmpt.2 y = B ψ χ
3 1 fnmpt x A B V F Fn A
4 dfsbcq w = F z [˙w / y]˙ ψ [˙ F z / y]˙ ψ
5 4 ralrn F Fn A w ran F [˙w / y]˙ ψ z A [˙ F z / y]˙ ψ
6 3 5 syl x A B V w ran F [˙w / y]˙ ψ z A [˙ F z / y]˙ ψ
7 nfv w ψ
8 nfsbc1v y [˙w / y]˙ ψ
9 sbceq1a y = w ψ [˙w / y]˙ ψ
10 7 8 9 cbvral y ran F ψ w ran F [˙w / y]˙ ψ
11 10 bicomi w ran F [˙w / y]˙ ψ y ran F ψ
12 nfmpt1 _ x x A B
13 1 12 nfcxfr _ x F
14 nfcv _ x z
15 13 14 nffv _ x F z
16 nfv x ψ
17 15 16 nfsbc x [˙ F z / y]˙ ψ
18 nfv z [˙ F x / y]˙ ψ
19 fveq2 z = x F z = F x
20 19 sbceq1d z = x [˙ F z / y]˙ ψ [˙ F x / y]˙ ψ
21 17 18 20 cbvral z A [˙ F z / y]˙ ψ x A [˙ F x / y]˙ ψ
22 6 11 21 3bitr3g x A B V y ran F ψ x A [˙ F x / y]˙ ψ
23 1 fvmpt2 x A B V F x = B
24 23 sbceq1d x A B V [˙ F x / y]˙ ψ [˙B / y]˙ ψ
25 2 sbcieg B V [˙B / y]˙ ψ χ
26 25 adantl x A B V [˙B / y]˙ ψ χ
27 24 26 bitrd x A B V [˙ F x / y]˙ ψ χ
28 27 ralimiaa x A B V x A [˙ F x / y]˙ ψ χ
29 ralbi x A [˙ F x / y]˙ ψ χ x A [˙ F x / y]˙ ψ x A χ
30 28 29 syl x A B V x A [˙ F x / y]˙ ψ x A χ
31 22 30 bitrd x A B V y ran F ψ x A χ