Metamath Proof Explorer


Theorem ralrnmpt3

Description: A restricted quantifier over an image set. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses ralrnmpt3.1 xφ
ralrnmpt3.2 φxABV
ralrnmpt3.3 y=Bψχ
Assertion ralrnmpt3 φyranxABψxAχ

Proof

Step Hyp Ref Expression
1 ralrnmpt3.1 xφ
2 ralrnmpt3.2 φxABV
3 ralrnmpt3.3 y=Bψχ
4 1 2 ralrimia φxABV
5 eqid xAB=xAB
6 5 3 ralrnmptw xABVyranxABψxAχ
7 4 6 syl φyranxABψxAχ