Metamath Proof Explorer


Theorem ralrnmpt3

Description: A restricted quantifier over an image set. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses ralrnmpt3.1 x φ
ralrnmpt3.2 φ x A B V
ralrnmpt3.3 y = B ψ χ
Assertion ralrnmpt3 φ y ran x A B ψ x A χ

Proof

Step Hyp Ref Expression
1 ralrnmpt3.1 x φ
2 ralrnmpt3.2 φ x A B V
3 ralrnmpt3.3 y = B ψ χ
4 1 2 ralrimia φ x A B V
5 eqid x A B = x A B
6 5 3 ralrnmptw x A B V y ran x A B ψ x A χ
7 4 6 syl φ y ran x A B ψ x A χ