Metamath Proof Explorer
Description: Convert a universal quantification restricted to a singleton to a
substitution. (Contributed by NM, 27-Apr-2009)
|
|
Ref |
Expression |
|
Hypotheses |
ralsn.1 |
|
|
|
ralsn.2 |
|
|
Assertion |
ralsn |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ralsn.1 |
|
2 |
|
ralsn.2 |
|
3 |
2
|
ralsng |
|
4 |
1 3
|
ax-mp |
|