Metamath Proof Explorer
Description: Convert a universal quantification restricted to a singleton to a
substitution. (Contributed by NM, 27-Apr-2009)
|
|
Ref |
Expression |
|
Hypotheses |
ralsn.1 |
|
|
|
ralsn.2 |
|
|
Assertion |
ralsn |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ralsn.1 |
|
| 2 |
|
ralsn.2 |
|
| 3 |
2
|
ralsng |
|
| 4 |
1 3
|
ax-mp |
|