Metamath Proof Explorer


Theorem ralsn

Description: Convert a universal quantification restricted to a singleton to a substitution. (Contributed by NM, 27-Apr-2009)

Ref Expression
Hypotheses ralsn.1 A V
ralsn.2 x = A φ ψ
Assertion ralsn x A φ ψ

Proof

Step Hyp Ref Expression
1 ralsn.1 A V
2 ralsn.2 x = A φ ψ
3 2 ralsng A V x A φ ψ
4 1 3 ax-mp x A φ ψ