Metamath Proof Explorer


Theorem ralsngf

Description: Restricted universal quantification over a singleton. (Contributed by NM, 14-Dec-2005) (Revised by AV, 3-Apr-2023)

Ref Expression
Hypotheses rexsngf.1 x ψ
rexsngf.2 x = A φ ψ
Assertion ralsngf A V x A φ ψ

Proof

Step Hyp Ref Expression
1 rexsngf.1 x ψ
2 rexsngf.2 x = A φ ψ
3 ralsnsg A V x A φ [˙A / x]˙ φ
4 1 2 sbciegf A V [˙A / x]˙ φ ψ
5 3 4 bitrd A V x A φ ψ