Metamath Proof Explorer
Description: Restricted universal quantification over a singleton. (Contributed by NM, 14-Dec-2005) (Revised by AV, 3-Apr-2023)
|
|
Ref |
Expression |
|
Hypotheses |
rexsngf.1 |
|
|
|
rexsngf.2 |
|
|
Assertion |
ralsngf |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rexsngf.1 |
|
2 |
|
rexsngf.2 |
|
3 |
|
ralsnsg |
|
4 |
1 2
|
sbciegf |
|
5 |
3 4
|
bitrd |
|