Metamath Proof Explorer


Theorem ralsnsg

Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005) (Revised by Mario Carneiro, 23-Apr-2015)

Ref Expression
Assertion ralsnsg A V x A φ [˙A / x]˙ φ

Proof

Step Hyp Ref Expression
1 df-ral x A φ x x A φ
2 velsn x A x = A
3 2 imbi1i x A φ x = A φ
4 3 albii x x A φ x x = A φ
5 1 4 bitri x A φ x x = A φ
6 sbc6g A V [˙A / x]˙ φ x x = A φ
7 5 6 bitr4id A V x A φ [˙A / x]˙ φ