Metamath Proof Explorer


Theorem ralss

Description: Restricted universal quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015) Avoid axioms. (Revised by SN, 14-Oct-2025)

Ref Expression
Assertion ralss A B x A φ x B x A φ

Proof

Step Hyp Ref Expression
1 df-ss A B x x A x B
2 id x A x B x A x B
3 2 pm4.71rd x A x B x A x B x A
4 3 imbi1d x A x B x A φ x B x A φ
5 impexp x B x A φ x B x A φ
6 4 5 bitrdi x A x B x A φ x B x A φ
7 6 alimi x x A x B x x A φ x B x A φ
8 1 7 sylbi A B x x A φ x B x A φ
9 albi x x A φ x B x A φ x x A φ x x B x A φ
10 8 9 syl A B x x A φ x x B x A φ
11 df-ral x A φ x x A φ
12 df-ral x B x A φ x x B x A φ
13 10 11 12 3bitr4g A B x A φ x B x A φ