Metamath Proof Explorer


Theorem raltp

Description: Convert a universal quantification over an unordered triple to a conjunction. (Contributed by NM, 13-Sep-2011) (Revised by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypotheses raltp.1 A V
raltp.2 B V
raltp.3 C V
raltp.4 x = A φ ψ
raltp.5 x = B φ χ
raltp.6 x = C φ θ
Assertion raltp x A B C φ ψ χ θ

Proof

Step Hyp Ref Expression
1 raltp.1 A V
2 raltp.2 B V
3 raltp.3 C V
4 raltp.4 x = A φ ψ
5 raltp.5 x = B φ χ
6 raltp.6 x = C φ θ
7 4 5 6 raltpg A V B V C V x A B C φ ψ χ θ
8 1 2 3 7 mp3an x A B C φ ψ χ θ