Description: Convert a universal quantification over an unordered triple to a conjunction. (Contributed by Thierry Arnoux, 8-Apr-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralprd.1 | |
|
| ralprd.2 | |
||
| raltpd.3 | |
||
| ralprd.a | |
||
| ralprd.b | |
||
| raltpd.c | |
||
| Assertion | raltpd | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralprd.1 | |
|
| 2 | ralprd.2 | |
|
| 3 | raltpd.3 | |
|
| 4 | ralprd.a | |
|
| 5 | ralprd.b | |
|
| 6 | raltpd.c | |
|
| 7 | an3andi | |
|
| 8 | 7 | a1i | |
| 9 | 1 | expcom | |
| 10 | 9 | pm5.32d | |
| 11 | 2 | expcom | |
| 12 | 11 | pm5.32d | |
| 13 | 3 | expcom | |
| 14 | 13 | pm5.32d | |
| 15 | 10 12 14 | raltpg | |
| 16 | 4 5 6 15 | syl3anc | |
| 17 | 4 | tpnzd | |
| 18 | r19.28zv | |
|
| 19 | 17 18 | syl | |
| 20 | 8 16 19 | 3bitr2d | |
| 21 | 20 | bianabs | |
| 22 | 21 | bicomd | |
| 23 | 22 | bianabs | |