Metamath Proof Explorer


Theorem raltpd

Description: Convert a universal quantification over an unordered triple to a conjunction. (Contributed by Thierry Arnoux, 8-Apr-2019)

Ref Expression
Hypotheses ralprd.1 φ x = A ψ χ
ralprd.2 φ x = B ψ θ
raltpd.3 φ x = C ψ τ
ralprd.a φ A V
ralprd.b φ B W
raltpd.c φ C X
Assertion raltpd φ x A B C ψ χ θ τ

Proof

Step Hyp Ref Expression
1 ralprd.1 φ x = A ψ χ
2 ralprd.2 φ x = B ψ θ
3 raltpd.3 φ x = C ψ τ
4 ralprd.a φ A V
5 ralprd.b φ B W
6 raltpd.c φ C X
7 an3andi φ χ θ τ φ χ φ θ φ τ
8 7 a1i φ φ χ θ τ φ χ φ θ φ τ
9 1 expcom x = A φ ψ χ
10 9 pm5.32d x = A φ ψ φ χ
11 2 expcom x = B φ ψ θ
12 11 pm5.32d x = B φ ψ φ θ
13 3 expcom x = C φ ψ τ
14 13 pm5.32d x = C φ ψ φ τ
15 10 12 14 raltpg A V B W C X x A B C φ ψ φ χ φ θ φ τ
16 4 5 6 15 syl3anc φ x A B C φ ψ φ χ φ θ φ τ
17 4 tpnzd φ A B C
18 r19.28zv A B C x A B C φ ψ φ x A B C ψ
19 17 18 syl φ x A B C φ ψ φ x A B C ψ
20 8 16 19 3bitr2d φ φ χ θ τ φ x A B C ψ
21 20 bianabs φ φ χ θ τ x A B C ψ
22 21 bicomd φ x A B C ψ φ χ θ τ
23 22 bianabs φ x A B C ψ χ θ τ