Metamath Proof Explorer


Theorem raltpg

Description: Convert a restricted universal quantification over a triple to a conjunction. (Contributed by NM, 17-Sep-2011) (Revised by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypotheses ralprg.1 x = A φ ψ
ralprg.2 x = B φ χ
raltpg.3 x = C φ θ
Assertion raltpg A V B W C X x A B C φ ψ χ θ

Proof

Step Hyp Ref Expression
1 ralprg.1 x = A φ ψ
2 ralprg.2 x = B φ χ
3 raltpg.3 x = C φ θ
4 1 2 ralprg A V B W x A B φ ψ χ
5 3 ralsng C X x C φ θ
6 4 5 bi2anan9 A V B W C X x A B φ x C φ ψ χ θ
7 6 3impa A V B W C X x A B φ x C φ ψ χ θ
8 df-tp A B C = A B C
9 8 raleqi x A B C φ x A B C φ
10 ralunb x A B C φ x A B φ x C φ
11 9 10 bitri x A B C φ x A B φ x C φ
12 df-3an ψ χ θ ψ χ θ
13 7 11 12 3bitr4g A V B W C X x A B C φ ψ χ θ