Metamath Proof Explorer


Theorem ralunb

Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011) (Proof shortened by Andrew Salmon, 29-Jun-2011)

Ref Expression
Assertion ralunb x A B φ x A φ x B φ

Proof

Step Hyp Ref Expression
1 elunant x A B φ x A φ x B φ
2 1 albii x x A B φ x x A φ x B φ
3 19.26 x x A φ x B φ x x A φ x x B φ
4 2 3 bitri x x A B φ x x A φ x x B φ
5 df-ral x A B φ x x A B φ
6 df-ral x A φ x x A φ
7 df-ral x B φ x x B φ
8 6 7 anbi12i x A φ x B φ x x A φ x x B φ
9 4 5 8 3bitr4i x A B φ x A φ x B φ