Metamath Proof Explorer


Theorem raluz2

Description: Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005)

Ref Expression
Assertion raluz2 n M φ M n M n φ

Proof

Step Hyp Ref Expression
1 eluz2 n M M n M n
2 3anass M n M n M n M n
3 1 2 bitri n M M n M n
4 3 imbi1i n M φ M n M n φ
5 impexp M n M n φ M n M n φ
6 impexp n M n φ n M n φ
7 6 imbi2i M n M n φ M n M n φ
8 5 7 bitri M n M n φ M n M n φ
9 bi2.04 M n M n φ n M M n φ
10 8 9 bitri M n M n φ n M M n φ
11 4 10 bitri n M φ n M M n φ
12 11 ralbii2 n M φ n M M n φ
13 r19.21v n M M n φ M n M n φ
14 12 13 bitri n M φ M n M n φ