Metamath Proof Explorer


Theorem ralv

Description: A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004)

Ref Expression
Assertion ralv x V φ x φ

Proof

Step Hyp Ref Expression
1 df-ral x V φ x x V φ
2 vex x V
3 2 a1bi φ x V φ
4 3 albii x φ x x V φ
5 1 4 bitr4i x V φ x φ