Metamath Proof Explorer


Theorem ralxfr

Description: Transfer universal quantification from a variable x to another variable y contained in expression A . (Contributed by NM, 10-Jun-2005) (Revised by Mario Carneiro, 15-Aug-2014)

Ref Expression
Hypotheses ralxfr.1 y C A B
ralxfr.2 x B y C x = A
ralxfr.3 x = A φ ψ
Assertion ralxfr x B φ y C ψ

Proof

Step Hyp Ref Expression
1 ralxfr.1 y C A B
2 ralxfr.2 x B y C x = A
3 ralxfr.3 x = A φ ψ
4 1 adantl y C A B
5 2 adantl x B y C x = A
6 3 adantl x = A φ ψ
7 4 5 6 ralxfrd x B φ y C ψ
8 7 mptru x B φ y C ψ