Metamath Proof Explorer


Theorem ralxfr2d

Description: Transfer universal quantification from a variable x to another variable y contained in expression A . (Contributed by Mario Carneiro, 20-Aug-2014)

Ref Expression
Hypotheses ralxfr2d.1 φ y C A V
ralxfr2d.2 φ x B y C x = A
ralxfr2d.3 φ x = A ψ χ
Assertion ralxfr2d φ x B ψ y C χ

Proof

Step Hyp Ref Expression
1 ralxfr2d.1 φ y C A V
2 ralxfr2d.2 φ x B y C x = A
3 ralxfr2d.3 φ x = A ψ χ
4 elisset A V x x = A
5 1 4 syl φ y C x x = A
6 2 biimprd φ y C x = A x B
7 r19.23v y C x = A x B y C x = A x B
8 6 7 sylibr φ y C x = A x B
9 8 r19.21bi φ y C x = A x B
10 eleq1 x = A x B A B
11 9 10 mpbidi φ y C x = A A B
12 11 exlimdv φ y C x x = A A B
13 5 12 mpd φ y C A B
14 2 biimpa φ x B y C x = A
15 13 14 3 ralxfrd φ x B ψ y C χ