Metamath Proof Explorer


Theorem ralxfrALT

Description: Alternate proof of ralxfr which does not use ralxfrd . (Contributed by NM, 10-Jun-2005) (Revised by Mario Carneiro, 15-Aug-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ralxfr.1 yCAB
ralxfr.2 xByCx=A
ralxfr.3 x=Aφψ
Assertion ralxfrALT xBφyCψ

Proof

Step Hyp Ref Expression
1 ralxfr.1 yCAB
2 ralxfr.2 xByCx=A
3 ralxfr.3 x=Aφψ
4 3 rspcv ABxBφψ
5 1 4 syl yCxBφψ
6 5 com12 xBφyCψ
7 6 ralrimiv xBφyCψ
8 nfra1 yyCψ
9 nfv yφ
10 rsp yCψyCψ
11 3 biimprcd ψx=Aφ
12 10 11 syl6 yCψyCx=Aφ
13 8 9 12 rexlimd yCψyCx=Aφ
14 2 13 syl5 yCψxBφ
15 14 ralrimiv yCψxBφ
16 7 15 impbii xBφyCψ