Description: Alternate proof of ralxfr which does not use ralxfrd . (Contributed by NM, 10-Jun-2005) (Revised by Mario Carneiro, 15-Aug-2014) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ralxfr.1 | |
|
ralxfr.2 | |
||
ralxfr.3 | |
||
Assertion | ralxfrALT | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralxfr.1 | |
|
2 | ralxfr.2 | |
|
3 | ralxfr.3 | |
|
4 | 3 | rspcv | |
5 | 1 4 | syl | |
6 | 5 | com12 | |
7 | 6 | ralrimiv | |
8 | nfra1 | |
|
9 | nfv | |
|
10 | rsp | |
|
11 | 3 | biimprcd | |
12 | 10 11 | syl6 | |
13 | 8 9 12 | rexlimd | |
14 | 2 13 | syl5 | |
15 | 14 | ralrimiv | |
16 | 7 15 | impbii | |