Metamath Proof Explorer


Theorem ralxp3

Description: Restricted for all over a triple Cartesian product. (Contributed by Scott Fenton, 2-Feb-2025)

Ref Expression
Hypothesis ralxp3.1 x = y z w φ ψ
Assertion ralxp3 x A × B × C φ y A z B w C ψ

Proof

Step Hyp Ref Expression
1 ralxp3.1 x = y z w φ ψ
2 nfv y φ
3 nfv z φ
4 nfv w φ
5 nfv x ψ
6 2 3 4 5 1 ralxp3f x A × B × C φ y A z B w C ψ