Metamath Proof Explorer


Theorem ram0

Description: The Ramsey number when R = (/) . (Contributed by Mario Carneiro, 22-Apr-2015)

Ref Expression
Assertion ram0 M 0 M Ramsey = M

Proof

Step Hyp Ref Expression
1 eqid a V , i 0 b 𝒫 a | b = i = a V , i 0 b 𝒫 a | b = i
2 id M 0 M 0
3 0ex V
4 3 a1i M 0 V
5 f0 : 0
6 5 a1i M 0 : 0
7 f00 f : s a V , i 0 b 𝒫 a | b = i M f = s a V , i 0 b 𝒫 a | b = i M =
8 vex s V
9 simpl M 0 M s M 0
10 1 hashbcval s V M 0 s a V , i 0 b 𝒫 a | b = i M = x 𝒫 s | x = M
11 8 9 10 sylancr M 0 M s s a V , i 0 b 𝒫 a | b = i M = x 𝒫 s | x = M
12 hashfz1 M 0 1 M = M
13 12 breq1d M 0 1 M s M s
14 13 biimpar M 0 M s 1 M s
15 fzfid M 0 M s 1 M Fin
16 hashdom 1 M Fin s V 1 M s 1 M s
17 15 8 16 sylancl M 0 M s 1 M s 1 M s
18 14 17 mpbid M 0 M s 1 M s
19 8 domen 1 M s x 1 M x x s
20 18 19 sylib M 0 M s x 1 M x x s
21 simprr M 0 M s 1 M x x s x s
22 velpw x 𝒫 s x s
23 21 22 sylibr M 0 M s 1 M x x s x 𝒫 s
24 hasheni 1 M x 1 M = x
25 24 ad2antrl M 0 M s 1 M x x s 1 M = x
26 12 ad2antrr M 0 M s 1 M x x s 1 M = M
27 25 26 eqtr3d M 0 M s 1 M x x s x = M
28 23 27 jca M 0 M s 1 M x x s x 𝒫 s x = M
29 28 ex M 0 M s 1 M x x s x 𝒫 s x = M
30 29 eximdv M 0 M s x 1 M x x s x x 𝒫 s x = M
31 20 30 mpd M 0 M s x x 𝒫 s x = M
32 df-rex x 𝒫 s x = M x x 𝒫 s x = M
33 31 32 sylibr M 0 M s x 𝒫 s x = M
34 rabn0 x 𝒫 s | x = M x 𝒫 s x = M
35 33 34 sylibr M 0 M s x 𝒫 s | x = M
36 11 35 eqnetrd M 0 M s s a V , i 0 b 𝒫 a | b = i M
37 36 neneqd M 0 M s ¬ s a V , i 0 b 𝒫 a | b = i M =
38 37 pm2.21d M 0 M s s a V , i 0 b 𝒫 a | b = i M = c x 𝒫 s c x x a V , i 0 b 𝒫 a | b = i M f -1 c
39 38 adantld M 0 M s f = s a V , i 0 b 𝒫 a | b = i M = c x 𝒫 s c x x a V , i 0 b 𝒫 a | b = i M f -1 c
40 7 39 syl5bi M 0 M s f : s a V , i 0 b 𝒫 a | b = i M c x 𝒫 s c x x a V , i 0 b 𝒫 a | b = i M f -1 c
41 40 impr M 0 M s f : s a V , i 0 b 𝒫 a | b = i M c x 𝒫 s c x x a V , i 0 b 𝒫 a | b = i M f -1 c
42 1 2 4 6 2 41 ramub M 0 M Ramsey M
43 nnnn0 M M 0
44 3 a1i M V
45 5 a1i M : 0
46 nnm1nn0 M M 1 0
47 f0 :
48 fzfid M 1 M 1 Fin
49 1 hashbc2 1 M 1 Fin M 0 1 M 1 a V , i 0 b 𝒫 a | b = i M = ( 1 M 1 M)
50 48 43 49 syl2anc M 1 M 1 a V , i 0 b 𝒫 a | b = i M = ( 1 M 1 M)
51 hashfz1 M 1 0 1 M 1 = M 1
52 46 51 syl M 1 M 1 = M 1
53 52 oveq1d M ( 1 M 1 M) = ( M 1 M)
54 nnz M M
55 nnre M M
56 55 ltm1d M M 1 < M
57 56 olcd M M < 0 M 1 < M
58 bcval4 M 1 0 M M < 0 M 1 < M ( M 1 M) = 0
59 46 54 57 58 syl3anc M ( M 1 M) = 0
60 50 53 59 3eqtrd M 1 M 1 a V , i 0 b 𝒫 a | b = i M = 0
61 ovex 1 M 1 a V , i 0 b 𝒫 a | b = i M V
62 hasheq0 1 M 1 a V , i 0 b 𝒫 a | b = i M V 1 M 1 a V , i 0 b 𝒫 a | b = i M = 0 1 M 1 a V , i 0 b 𝒫 a | b = i M =
63 61 62 ax-mp 1 M 1 a V , i 0 b 𝒫 a | b = i M = 0 1 M 1 a V , i 0 b 𝒫 a | b = i M =
64 60 63 sylib M 1 M 1 a V , i 0 b 𝒫 a | b = i M =
65 64 feq2d M : 1 M 1 a V , i 0 b 𝒫 a | b = i M :
66 47 65 mpbiri M : 1 M 1 a V , i 0 b 𝒫 a | b = i M
67 noel ¬ c
68 67 pm2.21i c x a V , i 0 b 𝒫 a | b = i M -1 c x < c
69 68 ad2antrl M c x 1 M 1 x a V , i 0 b 𝒫 a | b = i M -1 c x < c
70 1 43 44 45 46 66 69 ramlb M M 1 < M Ramsey
71 ramubcl M 0 V : 0 M 0 M Ramsey M M Ramsey 0
72 2 4 6 2 42 71 syl32anc M 0 M Ramsey 0
73 nn0lem1lt M 0 M Ramsey 0 M M Ramsey M 1 < M Ramsey
74 43 72 73 syl2anc2 M M M Ramsey M 1 < M Ramsey
75 70 74 mpbird M M M Ramsey
76 75 a1i M 0 M M M Ramsey
77 72 nn0ge0d M 0 0 M Ramsey
78 breq1 M = 0 M M Ramsey 0 M Ramsey
79 77 78 syl5ibrcom M 0 M = 0 M M Ramsey
80 elnn0 M 0 M M = 0
81 80 biimpi M 0 M M = 0
82 76 79 81 mpjaod M 0 M M Ramsey
83 72 nn0red M 0 M Ramsey
84 nn0re M 0 M
85 83 84 letri3d M 0 M Ramsey = M M Ramsey M M M Ramsey
86 42 82 85 mpbir2and M 0 M Ramsey = M