| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0ex |
|
| 2 |
|
simpr |
|
| 3 |
|
elmapg |
|
| 4 |
1 2 3
|
sylancr |
|
| 5 |
|
oveq1 |
|
| 6 |
5
|
eleq1d |
|
| 7 |
6
|
ralbidv |
|
| 8 |
7
|
imbi2d |
|
| 9 |
|
oveq1 |
|
| 10 |
9
|
eleq1d |
|
| 11 |
10
|
ralbidv |
|
| 12 |
11
|
imbi2d |
|
| 13 |
|
oveq1 |
|
| 14 |
13
|
eleq1d |
|
| 15 |
14
|
ralbidv |
|
| 16 |
15
|
imbi2d |
|
| 17 |
|
oveq1 |
|
| 18 |
17
|
eleq1d |
|
| 19 |
18
|
ralbidv |
|
| 20 |
19
|
imbi2d |
|
| 21 |
|
elmapi |
|
| 22 |
|
0ramcl |
|
| 23 |
21 22
|
sylan2 |
|
| 24 |
23
|
ralrimiva |
|
| 25 |
|
oveq2 |
|
| 26 |
25
|
eleq1d |
|
| 27 |
26
|
cbvralvw |
|
| 28 |
|
simpll |
|
| 29 |
21
|
ad2antrl |
|
| 30 |
29
|
ffvelcdmda |
|
| 31 |
28 30
|
fsumnn0cl |
|
| 32 |
|
eqeq2 |
|
| 33 |
32
|
anbi2d |
|
| 34 |
33
|
imbi1d |
|
| 35 |
34
|
albidv |
|
| 36 |
35
|
imbi2d |
|
| 37 |
|
eqeq2 |
|
| 38 |
37
|
anbi2d |
|
| 39 |
38
|
imbi1d |
|
| 40 |
39
|
albidv |
|
| 41 |
40
|
imbi2d |
|
| 42 |
|
eqeq2 |
|
| 43 |
42
|
anbi2d |
|
| 44 |
43
|
imbi1d |
|
| 45 |
44
|
albidv |
|
| 46 |
45
|
imbi2d |
|
| 47 |
|
eqeq2 |
|
| 48 |
47
|
anbi2d |
|
| 49 |
48
|
imbi1d |
|
| 50 |
49
|
albidv |
|
| 51 |
50
|
imbi2d |
|
| 52 |
|
simplll |
|
| 53 |
|
ffvelcdm |
|
| 54 |
53
|
adantll |
|
| 55 |
54
|
nn0red |
|
| 56 |
54
|
nn0ge0d |
|
| 57 |
52 55 56
|
fsum00 |
|
| 58 |
|
fvex |
|
| 59 |
58
|
rgenw |
|
| 60 |
|
mpteqb |
|
| 61 |
59 60
|
ax-mp |
|
| 62 |
57 61
|
bitr4di |
|
| 63 |
|
simpr |
|
| 64 |
63
|
feqmptd |
|
| 65 |
|
fconstmpt |
|
| 66 |
65
|
a1i |
|
| 67 |
64 66
|
eqeq12d |
|
| 68 |
62 67
|
bitr4d |
|
| 69 |
|
xpeq1 |
|
| 70 |
|
0xp |
|
| 71 |
69 70
|
eqtrdi |
|
| 72 |
71
|
oveq2d |
|
| 73 |
|
simpllr |
|
| 74 |
|
peano2nn0 |
|
| 75 |
73 74
|
syl |
|
| 76 |
|
ram0 |
|
| 77 |
75 76
|
syl |
|
| 78 |
72 77
|
sylan9eqr |
|
| 79 |
75
|
adantr |
|
| 80 |
78 79
|
eqeltrd |
|
| 81 |
75
|
adantr |
|
| 82 |
|
simp-4l |
|
| 83 |
|
simpr |
|
| 84 |
|
ramz |
|
| 85 |
81 82 83 84
|
syl3anc |
|
| 86 |
|
0nn0 |
|
| 87 |
85 86
|
eqeltrdi |
|
| 88 |
80 87
|
pm2.61dane |
|
| 89 |
|
oveq2 |
|
| 90 |
89
|
eleq1d |
|
| 91 |
88 90
|
syl5ibrcom |
|
| 92 |
68 91
|
sylbid |
|
| 93 |
92
|
expimpd |
|
| 94 |
93
|
alrimiv |
|
| 95 |
|
ffn |
|
| 96 |
95
|
ad2antrl |
|
| 97 |
|
ffnfv |
|
| 98 |
97
|
baib |
|
| 99 |
96 98
|
syl |
|
| 100 |
|
simplr |
|
| 101 |
100
|
ad2antrr |
|
| 102 |
101 74
|
syl |
|
| 103 |
|
simp-4l |
|
| 104 |
|
simprr |
|
| 105 |
|
nnssnn0 |
|
| 106 |
|
fss |
|
| 107 |
104 105 106
|
sylancl |
|
| 108 |
101
|
nn0cnd |
|
| 109 |
|
ax-1cn |
|
| 110 |
|
pncan |
|
| 111 |
108 109 110
|
sylancl |
|
| 112 |
111
|
oveq1d |
|
| 113 |
|
oveq2 |
|
| 114 |
113
|
eleq1d |
|
| 115 |
|
simprl |
|
| 116 |
115
|
ad2antrr |
|
| 117 |
103
|
adantr |
|
| 118 |
117
|
mptexd |
|
| 119 |
|
simpllr |
|
| 120 |
104
|
ffvelcdmda |
|
| 121 |
|
nnm1nn0 |
|
| 122 |
120 121
|
syl |
|
| 123 |
122
|
adantr |
|
| 124 |
107
|
adantr |
|
| 125 |
124
|
ffvelcdmda |
|
| 126 |
123 125
|
ifcld |
|
| 127 |
126
|
fmpttd |
|
| 128 |
|
simplrr |
|
| 129 |
|
simpr |
|
| 130 |
|
ffvelcdm |
|
| 131 |
130
|
3ad2antl2 |
|
| 132 |
131
|
nncnd |
|
| 133 |
132
|
subid1d |
|
| 134 |
133
|
ifeq2d |
|
| 135 |
|
fveq2 |
|
| 136 |
135
|
adantl |
|
| 137 |
136
|
oveq1d |
|
| 138 |
137
|
ifeq1da |
|
| 139 |
134 138
|
eqtr2d |
|
| 140 |
|
ovif2 |
|
| 141 |
139 140
|
eqtr4di |
|
| 142 |
141
|
sumeq2dv |
|
| 143 |
|
simp1 |
|
| 144 |
|
0cn |
|
| 145 |
109 144
|
ifcli |
|
| 146 |
145
|
a1i |
|
| 147 |
143 132 146
|
fsumsub |
|
| 148 |
|
elsng |
|
| 149 |
148
|
ifbid |
|
| 150 |
149
|
sumeq2i |
|
| 151 |
|
simp3 |
|
| 152 |
151
|
snssd |
|
| 153 |
|
sumhash |
|
| 154 |
143 152 153
|
syl2anc |
|
| 155 |
|
hashsng |
|
| 156 |
151 155
|
syl |
|
| 157 |
154 156
|
eqtrd |
|
| 158 |
150 157
|
eqtr3id |
|
| 159 |
158
|
oveq2d |
|
| 160 |
142 147 159
|
3eqtrd |
|
| 161 |
117 128 129 160
|
syl3anc |
|
| 162 |
|
simplrl |
|
| 163 |
162
|
oveq1d |
|
| 164 |
|
simplrr |
|
| 165 |
164
|
ad2antrr |
|
| 166 |
165
|
nn0cnd |
|
| 167 |
|
pncan |
|
| 168 |
166 109 167
|
sylancl |
|
| 169 |
161 163 168
|
3eqtrd |
|
| 170 |
127 169
|
jca |
|
| 171 |
|
feq1 |
|
| 172 |
|
fveq1 |
|
| 173 |
|
equequ1 |
|
| 174 |
|
fveq2 |
|
| 175 |
173 174
|
ifbieq2d |
|
| 176 |
|
eqid |
|
| 177 |
|
ovex |
|
| 178 |
|
fvex |
|
| 179 |
177 178
|
ifex |
|
| 180 |
175 176 179
|
fvmpt |
|
| 181 |
172 180
|
sylan9eq |
|
| 182 |
181
|
sumeq2dv |
|
| 183 |
182
|
eqeq1d |
|
| 184 |
171 183
|
anbi12d |
|
| 185 |
|
oveq2 |
|
| 186 |
185
|
eleq1d |
|
| 187 |
184 186
|
imbi12d |
|
| 188 |
187
|
spcgv |
|
| 189 |
118 119 170 188
|
syl3c |
|
| 190 |
189
|
fmpttd |
|
| 191 |
|
elmapg |
|
| 192 |
1 103 191
|
sylancr |
|
| 193 |
190 192
|
mpbird |
|
| 194 |
114 116 193
|
rspcdva |
|
| 195 |
112 194
|
eqeltrd |
|
| 196 |
|
peano2nn0 |
|
| 197 |
195 196
|
syl |
|
| 198 |
|
nn0p1nn |
|
| 199 |
100 198
|
syl |
|
| 200 |
199
|
ad2antrr |
|
| 201 |
|
equequ1 |
|
| 202 |
|
fveq2 |
|
| 203 |
201 202
|
ifbieq2d |
|
| 204 |
203
|
cbvmptv |
|
| 205 |
|
eqeq2 |
|
| 206 |
|
fveq2 |
|
| 207 |
206
|
oveq1d |
|
| 208 |
205 207
|
ifbieq1d |
|
| 209 |
208
|
mpteq2dv |
|
| 210 |
204 209
|
eqtrid |
|
| 211 |
210
|
oveq2d |
|
| 212 |
211
|
cbvmptv |
|
| 213 |
200 103 104 212 190 195
|
ramub1 |
|
| 214 |
|
ramubcl |
|
| 215 |
102 103 107 197 213 214
|
syl32anc |
|
| 216 |
215
|
expr |
|
| 217 |
216
|
adantrl |
|
| 218 |
99 217
|
sylbird |
|
| 219 |
|
rexnal |
|
| 220 |
|
simprl |
|
| 221 |
220
|
ffvelcdmda |
|
| 222 |
|
elnn0 |
|
| 223 |
221 222
|
sylib |
|
| 224 |
223
|
ord |
|
| 225 |
199
|
ad2antrr |
|
| 226 |
|
simp-4l |
|
| 227 |
225 226 220
|
3jca |
|
| 228 |
|
ramz2 |
|
| 229 |
227 228
|
sylan |
|
| 230 |
229 86
|
eqeltrdi |
|
| 231 |
230
|
expr |
|
| 232 |
224 231
|
syld |
|
| 233 |
232
|
rexlimdva |
|
| 234 |
219 233
|
biimtrrid |
|
| 235 |
218 234
|
pm2.61d |
|
| 236 |
235
|
exp31 |
|
| 237 |
236
|
alrimdv |
|
| 238 |
|
feq1 |
|
| 239 |
|
fveq1 |
|
| 240 |
239
|
sumeq2sdv |
|
| 241 |
240
|
eqeq1d |
|
| 242 |
238 241
|
anbi12d |
|
| 243 |
|
oveq2 |
|
| 244 |
243
|
eleq1d |
|
| 245 |
242 244
|
imbi12d |
|
| 246 |
245
|
cbvalvw |
|
| 247 |
237 246
|
imbitrrdi |
|
| 248 |
247
|
anassrs |
|
| 249 |
248
|
expcom |
|
| 250 |
249
|
a2d |
|
| 251 |
36 41 46 51 94 250
|
nn0ind |
|
| 252 |
251
|
com12 |
|
| 253 |
252
|
adantrl |
|
| 254 |
31 253
|
mpd |
|
| 255 |
240
|
biantrud |
|
| 256 |
255 238
|
bitr3d |
|
| 257 |
256 244
|
imbi12d |
|
| 258 |
257
|
spvv |
|
| 259 |
254 29 258
|
sylc |
|
| 260 |
259
|
expr |
|
| 261 |
260
|
ralrimdva |
|
| 262 |
27 261
|
biimtrid |
|
| 263 |
262
|
expcom |
|
| 264 |
263
|
a2d |
|
| 265 |
8 12 16 20 24 264
|
nn0ind |
|
| 266 |
265
|
imp |
|
| 267 |
|
oveq2 |
|
| 268 |
267
|
eleq1d |
|
| 269 |
268
|
rspccv |
|
| 270 |
266 269
|
syl |
|
| 271 |
4 270
|
sylbird |
|
| 272 |
271
|
3impia |
|