Metamath Proof Explorer


Theorem rami

Description: The defining property of a Ramsey number. (Contributed by Mario Carneiro, 22-Apr-2015)

Ref Expression
Hypotheses rami.c C = a V , i 0 b 𝒫 a | b = i
rami.m φ M 0
rami.r φ R V
rami.f φ F : R 0
rami.x φ M Ramsey F 0
rami.s φ S W
rami.l φ M Ramsey F S
rami.g φ G : S C M R
Assertion rami φ c R x 𝒫 S F c x x C M G -1 c

Proof

Step Hyp Ref Expression
1 rami.c C = a V , i 0 b 𝒫 a | b = i
2 rami.m φ M 0
3 rami.r φ R V
4 rami.f φ F : R 0
5 rami.x φ M Ramsey F 0
6 rami.s φ S W
7 rami.l φ M Ramsey F S
8 rami.g φ G : S C M R
9 cnveq f = G f -1 = G -1
10 9 imaeq1d f = G f -1 c = G -1 c
11 10 sseq2d f = G x C M f -1 c x C M G -1 c
12 11 anbi2d f = G F c x x C M f -1 c F c x x C M G -1 c
13 12 2rexbidv f = G c R x 𝒫 S F c x x C M f -1 c c R x 𝒫 S F c x x C M G -1 c
14 eqid n 0 | s n s f R s C M c R x 𝒫 s F c x x C M f -1 c = n 0 | s n s f R s C M c R x 𝒫 s F c x x C M f -1 c
15 1 14 ramtcl2 M 0 R V F : R 0 M Ramsey F 0 n 0 | s n s f R s C M c R x 𝒫 s F c x x C M f -1 c
16 1 14 ramtcl M 0 R V F : R 0 M Ramsey F n 0 | s n s f R s C M c R x 𝒫 s F c x x C M f -1 c n 0 | s n s f R s C M c R x 𝒫 s F c x x C M f -1 c
17 15 16 bitr4d M 0 R V F : R 0 M Ramsey F 0 M Ramsey F n 0 | s n s f R s C M c R x 𝒫 s F c x x C M f -1 c
18 2 3 4 17 syl3anc φ M Ramsey F 0 M Ramsey F n 0 | s n s f R s C M c R x 𝒫 s F c x x C M f -1 c
19 5 18 mpbid φ M Ramsey F n 0 | s n s f R s C M c R x 𝒫 s F c x x C M f -1 c
20 breq1 n = M Ramsey F n s M Ramsey F s
21 20 imbi1d n = M Ramsey F n s f R s C M c R x 𝒫 s F c x x C M f -1 c M Ramsey F s f R s C M c R x 𝒫 s F c x x C M f -1 c
22 21 albidv n = M Ramsey F s n s f R s C M c R x 𝒫 s F c x x C M f -1 c s M Ramsey F s f R s C M c R x 𝒫 s F c x x C M f -1 c
23 22 elrab M Ramsey F n 0 | s n s f R s C M c R x 𝒫 s F c x x C M f -1 c M Ramsey F 0 s M Ramsey F s f R s C M c R x 𝒫 s F c x x C M f -1 c
24 23 simprbi M Ramsey F n 0 | s n s f R s C M c R x 𝒫 s F c x x C M f -1 c s M Ramsey F s f R s C M c R x 𝒫 s F c x x C M f -1 c
25 19 24 syl φ s M Ramsey F s f R s C M c R x 𝒫 s F c x x C M f -1 c
26 fveq2 s = S s = S
27 26 breq2d s = S M Ramsey F s M Ramsey F S
28 oveq1 s = S s C M = S C M
29 28 oveq2d s = S R s C M = R S C M
30 pweq s = S 𝒫 s = 𝒫 S
31 30 rexeqdv s = S x 𝒫 s F c x x C M f -1 c x 𝒫 S F c x x C M f -1 c
32 31 rexbidv s = S c R x 𝒫 s F c x x C M f -1 c c R x 𝒫 S F c x x C M f -1 c
33 29 32 raleqbidv s = S f R s C M c R x 𝒫 s F c x x C M f -1 c f R S C M c R x 𝒫 S F c x x C M f -1 c
34 27 33 imbi12d s = S M Ramsey F s f R s C M c R x 𝒫 s F c x x C M f -1 c M Ramsey F S f R S C M c R x 𝒫 S F c x x C M f -1 c
35 34 spcgv S W s M Ramsey F s f R s C M c R x 𝒫 s F c x x C M f -1 c M Ramsey F S f R S C M c R x 𝒫 S F c x x C M f -1 c
36 6 25 7 35 syl3c φ f R S C M c R x 𝒫 S F c x x C M f -1 c
37 ovex S C M V
38 elmapg R V S C M V G R S C M G : S C M R
39 3 37 38 sylancl φ G R S C M G : S C M R
40 8 39 mpbird φ G R S C M
41 13 36 40 rspcdva φ c R x 𝒫 S F c x x C M G -1 c