Metamath Proof Explorer


Theorem ramlb

Description: Establish a lower bound on a Ramsey number. (Contributed by Mario Carneiro, 22-Apr-2015)

Ref Expression
Hypotheses ramlb.c C = a V , i 0 b 𝒫 a | b = i
ramlb.m φ M 0
ramlb.r φ R V
ramlb.f φ F : R 0
ramlb.s φ N 0
ramlb.g φ G : 1 N C M R
ramlb.i φ c R x 1 N x C M G -1 c x < F c
Assertion ramlb φ N < M Ramsey F

Proof

Step Hyp Ref Expression
1 ramlb.c C = a V , i 0 b 𝒫 a | b = i
2 ramlb.m φ M 0
3 ramlb.r φ R V
4 ramlb.f φ F : R 0
5 ramlb.s φ N 0
6 ramlb.g φ G : 1 N C M R
7 ramlb.i φ c R x 1 N x C M G -1 c x < F c
8 2 adantr φ M Ramsey F N M 0
9 3 adantr φ M Ramsey F N R V
10 4 adantr φ M Ramsey F N F : R 0
11 5 adantr φ M Ramsey F N N 0
12 simpr φ M Ramsey F N M Ramsey F N
13 ramubcl M 0 R V F : R 0 N 0 M Ramsey F N M Ramsey F 0
14 8 9 10 11 12 13 syl32anc φ M Ramsey F N M Ramsey F 0
15 fzfid φ M Ramsey F N 1 N Fin
16 hashfz1 N 0 1 N = N
17 5 16 syl φ 1 N = N
18 17 breq2d φ M Ramsey F 1 N M Ramsey F N
19 18 biimpar φ M Ramsey F N M Ramsey F 1 N
20 6 adantr φ M Ramsey F N G : 1 N C M R
21 1 8 9 10 14 15 19 20 rami φ M Ramsey F N c R x 𝒫 1 N F c x x C M G -1 c
22 elpwi x 𝒫 1 N x 1 N
23 7 adantlr φ M Ramsey F N c R x 1 N x C M G -1 c x < F c
24 fzfid φ M Ramsey F N c R x 1 N 1 N Fin
25 simprr φ M Ramsey F N c R x 1 N x 1 N
26 24 25 ssfid φ M Ramsey F N c R x 1 N x Fin
27 hashcl x Fin x 0
28 26 27 syl φ M Ramsey F N c R x 1 N x 0
29 28 nn0red φ M Ramsey F N c R x 1 N x
30 simpl c R x 1 N c R
31 ffvelrn F : R 0 c R F c 0
32 10 30 31 syl2an φ M Ramsey F N c R x 1 N F c 0
33 32 nn0red φ M Ramsey F N c R x 1 N F c
34 29 33 ltnled φ M Ramsey F N c R x 1 N x < F c ¬ F c x
35 23 34 sylibd φ M Ramsey F N c R x 1 N x C M G -1 c ¬ F c x
36 22 35 sylanr2 φ M Ramsey F N c R x 𝒫 1 N x C M G -1 c ¬ F c x
37 36 con2d φ M Ramsey F N c R x 𝒫 1 N F c x ¬ x C M G -1 c
38 imnan F c x ¬ x C M G -1 c ¬ F c x x C M G -1 c
39 37 38 sylib φ M Ramsey F N c R x 𝒫 1 N ¬ F c x x C M G -1 c
40 39 pm2.21d φ M Ramsey F N c R x 𝒫 1 N F c x x C M G -1 c ¬ M Ramsey F N
41 40 rexlimdvva φ M Ramsey F N c R x 𝒫 1 N F c x x C M G -1 c ¬ M Ramsey F N
42 21 41 mpd φ M Ramsey F N ¬ M Ramsey F N
43 42 pm2.01da φ ¬ M Ramsey F N
44 5 nn0red φ N
45 44 rexrd φ N *
46 ramxrcl M 0 R V F : R 0 M Ramsey F *
47 2 3 4 46 syl3anc φ M Ramsey F *
48 xrltnle N * M Ramsey F * N < M Ramsey F ¬ M Ramsey F N
49 45 47 48 syl2anc φ N < M Ramsey F ¬ M Ramsey F N
50 43 49 mpbird φ N < M Ramsey F