Metamath Proof Explorer


Theorem ramtcl

Description: The Ramsey number has the Ramsey number property if any number does. (Contributed by Mario Carneiro, 20-Apr-2015) (Revised by AV, 14-Sep-2020)

Ref Expression
Hypotheses ramval.c C = a V , i 0 b 𝒫 a | b = i
ramval.t T = n 0 | s n s f R s C M c R x 𝒫 s F c x x C M f -1 c
Assertion ramtcl M 0 R V F : R 0 M Ramsey F T T

Proof

Step Hyp Ref Expression
1 ramval.c C = a V , i 0 b 𝒫 a | b = i
2 ramval.t T = n 0 | s n s f R s C M c R x 𝒫 s F c x x C M f -1 c
3 ne0i M Ramsey F T T
4 1 2 ramcl2lem M 0 R V F : R 0 M Ramsey F = if T = +∞ sup T <
5 ifnefalse T if T = +∞ sup T < = sup T <
6 4 5 sylan9eq M 0 R V F : R 0 T M Ramsey F = sup T <
7 2 ssrab3 T 0
8 nn0uz 0 = 0
9 7 8 sseqtri T 0
10 9 a1i M 0 R V F : R 0 T 0
11 infssuzcl T 0 T sup T < T
12 10 11 sylan M 0 R V F : R 0 T sup T < T
13 6 12 eqeltrd M 0 R V F : R 0 T M Ramsey F T
14 13 ex M 0 R V F : R 0 T M Ramsey F T
15 3 14 impbid2 M 0 R V F : R 0 M Ramsey F T T