Metamath Proof Explorer


Theorem ramtcl2

Description: The Ramsey number is an integer iff there is a number with the Ramsey number property. (Contributed by Mario Carneiro, 20-Apr-2015) (Revised by AV, 14-Sep-2020)

Ref Expression
Hypotheses ramval.c C = a V , i 0 b 𝒫 a | b = i
ramval.t T = n 0 | s n s f R s C M c R x 𝒫 s F c x x C M f -1 c
Assertion ramtcl2 M 0 R V F : R 0 M Ramsey F 0 T

Proof

Step Hyp Ref Expression
1 ramval.c C = a V , i 0 b 𝒫 a | b = i
2 ramval.t T = n 0 | s n s f R s C M c R x 𝒫 s F c x x C M f -1 c
3 1 2 ramcl2lem M 0 R V F : R 0 M Ramsey F = if T = +∞ sup T <
4 3 eleq1d M 0 R V F : R 0 M Ramsey F 0 if T = +∞ sup T < 0
5 pnfnre +∞
6 5 neli ¬ +∞
7 iftrue T = if T = +∞ sup T < = +∞
8 7 eleq1d T = if T = +∞ sup T < 0 +∞ 0
9 nn0re +∞ 0 +∞
10 8 9 syl6bi T = if T = +∞ sup T < 0 +∞
11 6 10 mtoi T = ¬ if T = +∞ sup T < 0
12 11 necon2ai if T = +∞ sup T < 0 T
13 4 12 syl6bi M 0 R V F : R 0 M Ramsey F 0 T
14 1 2 ramtcl M 0 R V F : R 0 M Ramsey F T T
15 2 ssrab3 T 0
16 15 sseli M Ramsey F T M Ramsey F 0
17 14 16 syl6bir M 0 R V F : R 0 T M Ramsey F 0
18 13 17 impbid M 0 R V F : R 0 M Ramsey F 0 T