Metamath Proof Explorer


Theorem ramtlecl

Description: The set T of numbers with the Ramsey number property is upward-closed. (Contributed by Mario Carneiro, 21-Apr-2015)

Ref Expression
Hypothesis ramtlecl.t T = n 0 | s n s φ
Assertion ramtlecl M T M T

Proof

Step Hyp Ref Expression
1 ramtlecl.t T = n 0 | s n s φ
2 breq1 n = M n s M s
3 2 imbi1d n = M n s φ M s φ
4 3 albidv n = M s n s φ s M s φ
5 4 1 elrab2 M T M 0 s M s φ
6 5 simplbi M T M 0
7 eluznn0 M 0 n M n 0
8 7 ex M 0 n M n 0
9 8 ssrdv M 0 M 0
10 6 9 syl M T M 0
11 5 simprbi M T s M s φ
12 eluzle n M M n
13 12 adantl M T n M M n
14 nn0ssre 0
15 ressxr *
16 14 15 sstri 0 *
17 6 adantr M T n M M 0
18 16 17 sselid M T n M M *
19 6 7 sylan M T n M n 0
20 16 19 sselid M T n M n *
21 vex s V
22 hashxrcl s V s *
23 21 22 mp1i M T n M s *
24 xrletr M * n * s * M n n s M s
25 18 20 23 24 syl3anc M T n M M n n s M s
26 13 25 mpand M T n M n s M s
27 26 imim1d M T n M M s φ n s φ
28 27 ralrimdva M T M s φ n M n s φ
29 28 alimdv M T s M s φ s n M n s φ
30 11 29 mpd M T s n M n s φ
31 ralcom4 n M s n s φ s n M n s φ
32 30 31 sylibr M T n M s n s φ
33 ssrab M n 0 | s n s φ M 0 n M s n s φ
34 10 32 33 sylanbrc M T M n 0 | s n s φ
35 34 1 sseqtrrdi M T M T