Metamath Proof Explorer


Theorem ramub1

Description: Inductive step for Ramsey's theorem, in the form of an explicit upper bound. (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypotheses ramub1.m φ M
ramub1.r φ R Fin
ramub1.f φ F : R
ramub1.g G = x R M Ramsey y R if y = x F x 1 F y
ramub1.1 φ G : R 0
ramub1.2 φ M 1 Ramsey G 0
Assertion ramub1 φ M Ramsey F M 1 Ramsey G + 1

Proof

Step Hyp Ref Expression
1 ramub1.m φ M
2 ramub1.r φ R Fin
3 ramub1.f φ F : R
4 ramub1.g G = x R M Ramsey y R if y = x F x 1 F y
5 ramub1.1 φ G : R 0
6 ramub1.2 φ M 1 Ramsey G 0
7 eqid a V , i 0 b 𝒫 a | b = i = a V , i 0 b 𝒫 a | b = i
8 1 nnnn0d φ M 0
9 nnssnn0 0
10 fss F : R 0 F : R 0
11 3 9 10 sylancl φ F : R 0
12 peano2nn0 M 1 Ramsey G 0 M 1 Ramsey G + 1 0
13 6 12 syl φ M 1 Ramsey G + 1 0
14 simprl φ s = M 1 Ramsey G + 1 f : s a V , i 0 b 𝒫 a | b = i M R s = M 1 Ramsey G + 1
15 6 adantr φ s = M 1 Ramsey G + 1 f : s a V , i 0 b 𝒫 a | b = i M R M 1 Ramsey G 0
16 nn0p1nn M 1 Ramsey G 0 M 1 Ramsey G + 1
17 15 16 syl φ s = M 1 Ramsey G + 1 f : s a V , i 0 b 𝒫 a | b = i M R M 1 Ramsey G + 1
18 14 17 eqeltrd φ s = M 1 Ramsey G + 1 f : s a V , i 0 b 𝒫 a | b = i M R s
19 18 nnnn0d φ s = M 1 Ramsey G + 1 f : s a V , i 0 b 𝒫 a | b = i M R s 0
20 hashclb s V s Fin s 0
21 20 elv s Fin s 0
22 19 21 sylibr φ s = M 1 Ramsey G + 1 f : s a V , i 0 b 𝒫 a | b = i M R s Fin
23 hashnncl s Fin s s
24 22 23 syl φ s = M 1 Ramsey G + 1 f : s a V , i 0 b 𝒫 a | b = i M R s s
25 18 24 mpbid φ s = M 1 Ramsey G + 1 f : s a V , i 0 b 𝒫 a | b = i M R s
26 n0 s w w s
27 25 26 sylib φ s = M 1 Ramsey G + 1 f : s a V , i 0 b 𝒫 a | b = i M R w w s
28 1 adantr φ s = M 1 Ramsey G + 1 f : s a V , i 0 b 𝒫 a | b = i M R w s M
29 2 adantr φ s = M 1 Ramsey G + 1 f : s a V , i 0 b 𝒫 a | b = i M R w s R Fin
30 3 adantr φ s = M 1 Ramsey G + 1 f : s a V , i 0 b 𝒫 a | b = i M R w s F : R
31 5 adantr φ s = M 1 Ramsey G + 1 f : s a V , i 0 b 𝒫 a | b = i M R w s G : R 0
32 6 adantr φ s = M 1 Ramsey G + 1 f : s a V , i 0 b 𝒫 a | b = i M R w s M 1 Ramsey G 0
33 22 adantrr φ s = M 1 Ramsey G + 1 f : s a V , i 0 b 𝒫 a | b = i M R w s s Fin
34 simprll φ s = M 1 Ramsey G + 1 f : s a V , i 0 b 𝒫 a | b = i M R w s s = M 1 Ramsey G + 1
35 simprlr φ s = M 1 Ramsey G + 1 f : s a V , i 0 b 𝒫 a | b = i M R w s f : s a V , i 0 b 𝒫 a | b = i M R
36 simprr φ s = M 1 Ramsey G + 1 f : s a V , i 0 b 𝒫 a | b = i M R w s w s
37 uneq1 v = u v w = u w
38 37 fveq2d v = u f v w = f u w
39 38 cbvmptv v s w a V , i 0 b 𝒫 a | b = i M 1 f v w = u s w a V , i 0 b 𝒫 a | b = i M 1 f u w
40 28 29 30 4 31 32 7 33 34 35 36 39 ramub1lem2 φ s = M 1 Ramsey G + 1 f : s a V , i 0 b 𝒫 a | b = i M R w s c R z 𝒫 s F c z z a V , i 0 b 𝒫 a | b = i M f -1 c
41 40 expr φ s = M 1 Ramsey G + 1 f : s a V , i 0 b 𝒫 a | b = i M R w s c R z 𝒫 s F c z z a V , i 0 b 𝒫 a | b = i M f -1 c
42 41 exlimdv φ s = M 1 Ramsey G + 1 f : s a V , i 0 b 𝒫 a | b = i M R w w s c R z 𝒫 s F c z z a V , i 0 b 𝒫 a | b = i M f -1 c
43 27 42 mpd φ s = M 1 Ramsey G + 1 f : s a V , i 0 b 𝒫 a | b = i M R c R z 𝒫 s F c z z a V , i 0 b 𝒫 a | b = i M f -1 c
44 7 8 2 11 13 43 ramub2 φ M Ramsey F M 1 Ramsey G + 1