Metamath Proof Explorer


Theorem ramub1lem1

Description: Lemma for ramub1 . (Contributed by Mario Carneiro, 23-Apr-2015)

Ref Expression
Hypotheses ramub1.m φ M
ramub1.r φ R Fin
ramub1.f φ F : R
ramub1.g G = x R M Ramsey y R if y = x F x 1 F y
ramub1.1 φ G : R 0
ramub1.2 φ M 1 Ramsey G 0
ramub1.3 C = a V , i 0 b 𝒫 a | b = i
ramub1.4 φ S Fin
ramub1.5 φ S = M 1 Ramsey G + 1
ramub1.6 φ K : S C M R
ramub1.x φ X S
ramub1.h H = u S X C M 1 K u X
ramub1.d φ D R
ramub1.w φ W S X
ramub1.7 φ G D W
ramub1.8 φ W C M 1 H -1 D
ramub1.e φ E R
ramub1.v φ V W
ramub1.9 φ if E = D F D 1 F E V
ramub1.s φ V C M K -1 E
Assertion ramub1lem1 φ z 𝒫 S F E z z C M K -1 E

Proof

Step Hyp Ref Expression
1 ramub1.m φ M
2 ramub1.r φ R Fin
3 ramub1.f φ F : R
4 ramub1.g G = x R M Ramsey y R if y = x F x 1 F y
5 ramub1.1 φ G : R 0
6 ramub1.2 φ M 1 Ramsey G 0
7 ramub1.3 C = a V , i 0 b 𝒫 a | b = i
8 ramub1.4 φ S Fin
9 ramub1.5 φ S = M 1 Ramsey G + 1
10 ramub1.6 φ K : S C M R
11 ramub1.x φ X S
12 ramub1.h H = u S X C M 1 K u X
13 ramub1.d φ D R
14 ramub1.w φ W S X
15 ramub1.7 φ G D W
16 ramub1.8 φ W C M 1 H -1 D
17 ramub1.e φ E R
18 ramub1.v φ V W
19 ramub1.9 φ if E = D F D 1 F E V
20 ramub1.s φ V C M K -1 E
21 18 14 sstrd φ V S X
22 21 difss2d φ V S
23 11 snssd φ X S
24 22 23 unssd φ V X S
25 8 24 sselpwd φ V X 𝒫 S
26 25 adantr φ E = D V X 𝒫 S
27 iftrue E = D if E = D F D 1 F E = F D 1
28 27 adantl φ E = D if E = D F D 1 F E = F D 1
29 19 adantr φ E = D if E = D F D 1 F E V
30 28 29 eqbrtrrd φ E = D F D 1 V
31 3 13 ffvelrnd φ F D
32 31 adantr φ E = D F D
33 32 nnred φ E = D F D
34 1red φ E = D 1
35 8 22 ssfid φ V Fin
36 hashcl V Fin V 0
37 nn0re V 0 V
38 35 36 37 3syl φ V
39 38 adantr φ E = D V
40 33 34 39 lesubaddd φ E = D F D 1 V F D V + 1
41 30 40 mpbid φ E = D F D V + 1
42 fveq2 E = D F E = F D
43 snidg X S X X
44 11 43 syl φ X X
45 21 sseld φ X V X S X
46 eldifn X S X ¬ X X
47 45 46 syl6 φ X V ¬ X X
48 44 47 mt2d φ ¬ X V
49 hashunsng X S V Fin ¬ X V V X = V + 1
50 11 49 syl φ V Fin ¬ X V V X = V + 1
51 35 48 50 mp2and φ V X = V + 1
52 42 51 breqan12rd φ E = D F E V X F D V + 1
53 41 52 mpbird φ E = D F E V X
54 snfi X Fin
55 unfi V Fin X Fin V X Fin
56 35 54 55 sylancl φ V X Fin
57 1 nnnn0d φ M 0
58 7 hashbcval V X Fin M 0 V X C M = x 𝒫 V X | x = M
59 56 57 58 syl2anc φ V X C M = x 𝒫 V X | x = M
60 59 adantr φ E = D V X C M = x 𝒫 V X | x = M
61 simpl1l φ E = D x 𝒫 V X x = M x 𝒫 V φ
62 7 hashbcval V Fin M 0 V C M = x 𝒫 V | x = M
63 35 57 62 syl2anc φ V C M = x 𝒫 V | x = M
64 63 20 eqsstrrd φ x 𝒫 V | x = M K -1 E
65 61 64 syl φ E = D x 𝒫 V X x = M x 𝒫 V x 𝒫 V | x = M K -1 E
66 simpr φ E = D x 𝒫 V X x = M x 𝒫 V x 𝒫 V
67 simpl3 φ E = D x 𝒫 V X x = M x 𝒫 V x = M
68 rabid x x 𝒫 V | x = M x 𝒫 V x = M
69 66 67 68 sylanbrc φ E = D x 𝒫 V X x = M x 𝒫 V x x 𝒫 V | x = M
70 65 69 sseldd φ E = D x 𝒫 V X x = M x 𝒫 V x K -1 E
71 simpl2 φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x 𝒫 V X
72 71 elpwid φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x V X
73 simpl1l φ E = D x 𝒫 V X x = M ¬ x 𝒫 V φ
74 73 24 syl φ E = D x 𝒫 V X x = M ¬ x 𝒫 V V X S
75 72 74 sstrd φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x S
76 vex x V
77 76 elpw x 𝒫 S x S
78 75 77 sylibr φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x 𝒫 S
79 simpl3 φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x = M
80 rabid x x 𝒫 S | x = M x 𝒫 S x = M
81 78 79 80 sylanbrc φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x x 𝒫 S | x = M
82 7 hashbcval S Fin M 0 S C M = x 𝒫 S | x = M
83 8 57 82 syl2anc φ S C M = x 𝒫 S | x = M
84 73 83 syl φ E = D x 𝒫 V X x = M ¬ x 𝒫 V S C M = x 𝒫 S | x = M
85 81 84 eleqtrrd φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x S C M
86 14 difss2d φ W S
87 8 86 ssfid φ W Fin
88 nnm1nn0 M M 1 0
89 1 88 syl φ M 1 0
90 7 hashbcval W Fin M 1 0 W C M 1 = u 𝒫 W | u = M 1
91 87 89 90 syl2anc φ W C M 1 = u 𝒫 W | u = M 1
92 91 16 eqsstrrd φ u 𝒫 W | u = M 1 H -1 D
93 73 92 syl φ E = D x 𝒫 V X x = M ¬ x 𝒫 V u 𝒫 W | u = M 1 H -1 D
94 fveqeq2 u = x X u = M 1 x X = M 1
95 uncom V X = X V
96 72 95 sseqtrdi φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x X V
97 ssundif x X V x X V
98 96 97 sylib φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x X V
99 73 18 syl φ E = D x 𝒫 V X x = M ¬ x 𝒫 V V W
100 98 99 sstrd φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x X W
101 76 difexi x X V
102 101 elpw x X 𝒫 W x X W
103 100 102 sylibr φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x X 𝒫 W
104 73 8 syl φ E = D x 𝒫 V X x = M ¬ x 𝒫 V S Fin
105 104 75 ssfid φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x Fin
106 diffi x Fin x X Fin
107 105 106 syl φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x X Fin
108 hashcl x X Fin x X 0
109 nn0cn x X 0 x X
110 107 108 109 3syl φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x X
111 ax-1cn 1
112 pncan x X 1 x X + 1 - 1 = x X
113 110 111 112 sylancl φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x X + 1 - 1 = x X
114 neldifsnd φ E = D x 𝒫 V X x = M ¬ x 𝒫 V ¬ X x X
115 hashunsng X S x X Fin ¬ X x X x X X = x X + 1
116 73 11 115 3syl φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x X Fin ¬ X x X x X X = x X + 1
117 107 114 116 mp2and φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x X X = x X + 1
118 undif1 x X X = x X
119 simpr φ E = D x 𝒫 V X x = M ¬ x 𝒫 V ¬ x 𝒫 V
120 71 119 eldifd φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x 𝒫 V X 𝒫 V
121 elpwunsn x 𝒫 V X 𝒫 V X x
122 120 121 syl φ E = D x 𝒫 V X x = M ¬ x 𝒫 V X x
123 122 snssd φ E = D x 𝒫 V X x = M ¬ x 𝒫 V X x
124 ssequn2 X x x X = x
125 123 124 sylib φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x X = x
126 118 125 eqtr2id φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x = x X X
127 126 fveq2d φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x = x X X
128 127 79 eqtr3d φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x X X = M
129 117 128 eqtr3d φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x X + 1 = M
130 129 oveq1d φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x X + 1 - 1 = M 1
131 113 130 eqtr3d φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x X = M 1
132 94 103 131 elrabd φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x X u 𝒫 W | u = M 1
133 93 132 sseldd φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x X H -1 D
134 12 mptiniseg D R H -1 D = u S X C M 1 | K u X = D
135 73 13 134 3syl φ E = D x 𝒫 V X x = M ¬ x 𝒫 V H -1 D = u S X C M 1 | K u X = D
136 133 135 eleqtrd φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x X u S X C M 1 | K u X = D
137 uneq1 u = x X u X = x X X
138 137 fveqeq2d u = x X K u X = D K x X X = D
139 138 elrab x X u S X C M 1 | K u X = D x X S X C M 1 K x X X = D
140 139 simprbi x X u S X C M 1 | K u X = D K x X X = D
141 136 140 syl φ E = D x 𝒫 V X x = M ¬ x 𝒫 V K x X X = D
142 126 fveq2d φ E = D x 𝒫 V X x = M ¬ x 𝒫 V K x = K x X X
143 simpl1r φ E = D x 𝒫 V X x = M ¬ x 𝒫 V E = D
144 141 142 143 3eqtr4d φ E = D x 𝒫 V X x = M ¬ x 𝒫 V K x = E
145 10 ffnd φ K Fn S C M
146 fniniseg K Fn S C M x K -1 E x S C M K x = E
147 73 145 146 3syl φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x K -1 E x S C M K x = E
148 85 144 147 mpbir2and φ E = D x 𝒫 V X x = M ¬ x 𝒫 V x K -1 E
149 70 148 pm2.61dan φ E = D x 𝒫 V X x = M x K -1 E
150 149 rabssdv φ E = D x 𝒫 V X | x = M K -1 E
151 60 150 eqsstrd φ E = D V X C M K -1 E
152 fveq2 z = V X z = V X
153 152 breq2d z = V X F E z F E V X
154 oveq1 z = V X z C M = V X C M
155 154 sseq1d z = V X z C M K -1 E V X C M K -1 E
156 153 155 anbi12d z = V X F E z z C M K -1 E F E V X V X C M K -1 E
157 156 rspcev V X 𝒫 S F E V X V X C M K -1 E z 𝒫 S F E z z C M K -1 E
158 26 53 151 157 syl12anc φ E = D z 𝒫 S F E z z C M K -1 E
159 8 22 sselpwd φ V 𝒫 S
160 159 adantr φ E D V 𝒫 S
161 ifnefalse E D if E = D F D 1 F E = F E
162 161 adantl φ E D if E = D F D 1 F E = F E
163 19 adantr φ E D if E = D F D 1 F E V
164 162 163 eqbrtrrd φ E D F E V
165 20 adantr φ E D V C M K -1 E
166 fveq2 z = V z = V
167 166 breq2d z = V F E z F E V
168 oveq1 z = V z C M = V C M
169 168 sseq1d z = V z C M K -1 E V C M K -1 E
170 167 169 anbi12d z = V F E z z C M K -1 E F E V V C M K -1 E
171 170 rspcev V 𝒫 S F E V V C M K -1 E z 𝒫 S F E z z C M K -1 E
172 160 164 165 171 syl12anc φ E D z 𝒫 S F E z z C M K -1 E
173 158 172 pm2.61dane φ z 𝒫 S F E z z C M K -1 E