Step |
Hyp |
Ref |
Expression |
1 |
|
ramub1.m |
|
2 |
|
ramub1.r |
|
3 |
|
ramub1.f |
|
4 |
|
ramub1.g |
|
5 |
|
ramub1.1 |
|
6 |
|
ramub1.2 |
|
7 |
|
ramub1.3 |
|
8 |
|
ramub1.4 |
|
9 |
|
ramub1.5 |
|
10 |
|
ramub1.6 |
|
11 |
|
ramub1.x |
|
12 |
|
ramub1.h |
|
13 |
|
nnm1nn0 |
|
14 |
1 13
|
syl |
|
15 |
|
diffi |
|
16 |
8 15
|
syl |
|
17 |
6
|
nn0red |
|
18 |
17
|
leidd |
|
19 |
|
hashcl |
|
20 |
16 19
|
syl |
|
21 |
20
|
nn0cnd |
|
22 |
6
|
nn0cnd |
|
23 |
|
1cnd |
|
24 |
|
undif1 |
|
25 |
11
|
snssd |
|
26 |
|
ssequn2 |
|
27 |
25 26
|
sylib |
|
28 |
24 27
|
eqtrid |
|
29 |
28
|
fveq2d |
|
30 |
|
neldifsnd |
|
31 |
|
hashunsng |
|
32 |
11 31
|
syl |
|
33 |
16 30 32
|
mp2and |
|
34 |
29 33 9
|
3eqtr3d |
|
35 |
21 22 23 34
|
addcan2ad |
|
36 |
18 35
|
breqtrrd |
|
37 |
10
|
adantr |
|
38 |
|
fveqeq2 |
|
39 |
7
|
hashbcval |
|
40 |
16 14 39
|
syl2anc |
|
41 |
40
|
eleq2d |
|
42 |
|
fveqeq2 |
|
43 |
42
|
elrab |
|
44 |
41 43
|
bitrdi |
|
45 |
44
|
simprbda |
|
46 |
45
|
elpwid |
|
47 |
46
|
difss2d |
|
48 |
25
|
adantr |
|
49 |
47 48
|
unssd |
|
50 |
|
vex |
|
51 |
|
snex |
|
52 |
50 51
|
unex |
|
53 |
52
|
elpw |
|
54 |
49 53
|
sylibr |
|
55 |
16
|
adantr |
|
56 |
55 46
|
ssfid |
|
57 |
|
neldifsnd |
|
58 |
46 57
|
ssneldd |
|
59 |
11
|
adantr |
|
60 |
|
hashunsng |
|
61 |
59 60
|
syl |
|
62 |
56 58 61
|
mp2and |
|
63 |
44
|
simplbda |
|
64 |
63
|
oveq1d |
|
65 |
1
|
nncnd |
|
66 |
|
ax-1cn |
|
67 |
|
npcan |
|
68 |
65 66 67
|
sylancl |
|
69 |
68
|
adantr |
|
70 |
62 64 69
|
3eqtrd |
|
71 |
38 54 70
|
elrabd |
|
72 |
1
|
nnnn0d |
|
73 |
7
|
hashbcval |
|
74 |
8 72 73
|
syl2anc |
|
75 |
74
|
adantr |
|
76 |
71 75
|
eleqtrrd |
|
77 |
37 76
|
ffvelrnd |
|
78 |
77 12
|
fmptd |
|
79 |
7 14 2 5 6 16 36 78
|
rami |
|
80 |
72
|
adantr |
|
81 |
2
|
adantr |
|
82 |
3
|
adantr |
|
83 |
|
simprll |
|
84 |
82 83
|
ffvelrnd |
|
85 |
|
nnm1nn0 |
|
86 |
84 85
|
syl |
|
87 |
86
|
adantr |
|
88 |
82
|
ffvelrnda |
|
89 |
88
|
nnnn0d |
|
90 |
87 89
|
ifcld |
|
91 |
|
eqid |
|
92 |
90 91
|
fmptd |
|
93 |
|
equequ2 |
|
94 |
|
fveq2 |
|
95 |
94
|
oveq1d |
|
96 |
93 95
|
ifbieq1d |
|
97 |
96
|
mpteq2dv |
|
98 |
97
|
oveq2d |
|
99 |
|
ovex |
|
100 |
98 4 99
|
fvmpt |
|
101 |
83 100
|
syl |
|
102 |
5
|
adantr |
|
103 |
102 83
|
ffvelrnd |
|
104 |
101 103
|
eqeltrrd |
|
105 |
|
simprlr |
|
106 |
|
simprrl |
|
107 |
101 106
|
eqbrtrrd |
|
108 |
10
|
adantr |
|
109 |
8
|
adantr |
|
110 |
105
|
elpwid |
|
111 |
110
|
difss2d |
|
112 |
7
|
hashbcss |
|
113 |
109 111 80 112
|
syl3anc |
|
114 |
108 113
|
fssresd |
|
115 |
7 80 81 92 104 105 107 114
|
rami |
|
116 |
|
equequ1 |
|
117 |
|
fveq2 |
|
118 |
116 117
|
ifbieq2d |
|
119 |
|
ovex |
|
120 |
|
fvex |
|
121 |
119 120
|
ifex |
|
122 |
118 91 121
|
fvmpt |
|
123 |
122
|
ad2antrl |
|
124 |
123
|
breq1d |
|
125 |
124
|
anbi1d |
|
126 |
1
|
ad2antrr |
|
127 |
2
|
ad2antrr |
|
128 |
3
|
ad2antrr |
|
129 |
5
|
ad2antrr |
|
130 |
6
|
ad2antrr |
|
131 |
8
|
ad2antrr |
|
132 |
9
|
ad2antrr |
|
133 |
10
|
ad2antrr |
|
134 |
11
|
ad2antrr |
|
135 |
83
|
adantr |
|
136 |
110
|
adantr |
|
137 |
106
|
adantr |
|
138 |
|
simprrr |
|
139 |
138
|
adantr |
|
140 |
|
simprll |
|
141 |
|
simprlr |
|
142 |
141
|
elpwid |
|
143 |
|
simprrl |
|
144 |
|
simprrr |
|
145 |
|
cnvresima |
|
146 |
|
inss1 |
|
147 |
145 146
|
eqsstri |
|
148 |
144 147
|
sstrdi |
|
149 |
126 127 128 4 129 130 7 131 132 133 134 12 135 136 137 139 140 142 143 148
|
ramub1lem1 |
|
150 |
149
|
expr |
|
151 |
125 150
|
sylbid |
|
152 |
151
|
anassrs |
|
153 |
152
|
rexlimdva |
|
154 |
153
|
reximdva |
|
155 |
115 154
|
mpd |
|
156 |
155
|
expr |
|
157 |
156
|
rexlimdvva |
|
158 |
79 157
|
mpd |
|