| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ramub1.m |
|
| 2 |
|
ramub1.r |
|
| 3 |
|
ramub1.f |
|
| 4 |
|
ramub1.g |
|
| 5 |
|
ramub1.1 |
|
| 6 |
|
ramub1.2 |
|
| 7 |
|
ramub1.3 |
|
| 8 |
|
ramub1.4 |
|
| 9 |
|
ramub1.5 |
|
| 10 |
|
ramub1.6 |
|
| 11 |
|
ramub1.x |
|
| 12 |
|
ramub1.h |
|
| 13 |
|
nnm1nn0 |
|
| 14 |
1 13
|
syl |
|
| 15 |
|
diffi |
|
| 16 |
8 15
|
syl |
|
| 17 |
6
|
nn0red |
|
| 18 |
17
|
leidd |
|
| 19 |
|
hashcl |
|
| 20 |
16 19
|
syl |
|
| 21 |
20
|
nn0cnd |
|
| 22 |
6
|
nn0cnd |
|
| 23 |
|
1cnd |
|
| 24 |
|
undif1 |
|
| 25 |
11
|
snssd |
|
| 26 |
|
ssequn2 |
|
| 27 |
25 26
|
sylib |
|
| 28 |
24 27
|
eqtrid |
|
| 29 |
28
|
fveq2d |
|
| 30 |
|
neldifsnd |
|
| 31 |
|
hashunsng |
|
| 32 |
11 31
|
syl |
|
| 33 |
16 30 32
|
mp2and |
|
| 34 |
29 33 9
|
3eqtr3d |
|
| 35 |
21 22 23 34
|
addcan2ad |
|
| 36 |
18 35
|
breqtrrd |
|
| 37 |
10
|
adantr |
|
| 38 |
|
fveqeq2 |
|
| 39 |
7
|
hashbcval |
|
| 40 |
16 14 39
|
syl2anc |
|
| 41 |
40
|
eleq2d |
|
| 42 |
|
fveqeq2 |
|
| 43 |
42
|
elrab |
|
| 44 |
41 43
|
bitrdi |
|
| 45 |
44
|
simprbda |
|
| 46 |
45
|
elpwid |
|
| 47 |
46
|
difss2d |
|
| 48 |
25
|
adantr |
|
| 49 |
47 48
|
unssd |
|
| 50 |
|
vex |
|
| 51 |
|
snex |
|
| 52 |
50 51
|
unex |
|
| 53 |
52
|
elpw |
|
| 54 |
49 53
|
sylibr |
|
| 55 |
16
|
adantr |
|
| 56 |
55 46
|
ssfid |
|
| 57 |
|
neldifsnd |
|
| 58 |
46 57
|
ssneldd |
|
| 59 |
11
|
adantr |
|
| 60 |
|
hashunsng |
|
| 61 |
59 60
|
syl |
|
| 62 |
56 58 61
|
mp2and |
|
| 63 |
44
|
simplbda |
|
| 64 |
63
|
oveq1d |
|
| 65 |
1
|
nncnd |
|
| 66 |
|
ax-1cn |
|
| 67 |
|
npcan |
|
| 68 |
65 66 67
|
sylancl |
|
| 69 |
68
|
adantr |
|
| 70 |
62 64 69
|
3eqtrd |
|
| 71 |
38 54 70
|
elrabd |
|
| 72 |
1
|
nnnn0d |
|
| 73 |
7
|
hashbcval |
|
| 74 |
8 72 73
|
syl2anc |
|
| 75 |
74
|
adantr |
|
| 76 |
71 75
|
eleqtrrd |
|
| 77 |
37 76
|
ffvelcdmd |
|
| 78 |
77 12
|
fmptd |
|
| 79 |
7 14 2 5 6 16 36 78
|
rami |
|
| 80 |
72
|
adantr |
|
| 81 |
2
|
adantr |
|
| 82 |
3
|
adantr |
|
| 83 |
|
simprll |
|
| 84 |
82 83
|
ffvelcdmd |
|
| 85 |
|
nnm1nn0 |
|
| 86 |
84 85
|
syl |
|
| 87 |
86
|
adantr |
|
| 88 |
82
|
ffvelcdmda |
|
| 89 |
88
|
nnnn0d |
|
| 90 |
87 89
|
ifcld |
|
| 91 |
|
eqid |
|
| 92 |
90 91
|
fmptd |
|
| 93 |
|
equequ2 |
|
| 94 |
|
fveq2 |
|
| 95 |
94
|
oveq1d |
|
| 96 |
93 95
|
ifbieq1d |
|
| 97 |
96
|
mpteq2dv |
|
| 98 |
97
|
oveq2d |
|
| 99 |
|
ovex |
|
| 100 |
98 4 99
|
fvmpt |
|
| 101 |
83 100
|
syl |
|
| 102 |
5
|
adantr |
|
| 103 |
102 83
|
ffvelcdmd |
|
| 104 |
101 103
|
eqeltrrd |
|
| 105 |
|
simprlr |
|
| 106 |
|
simprrl |
|
| 107 |
101 106
|
eqbrtrrd |
|
| 108 |
10
|
adantr |
|
| 109 |
8
|
adantr |
|
| 110 |
105
|
elpwid |
|
| 111 |
110
|
difss2d |
|
| 112 |
7
|
hashbcss |
|
| 113 |
109 111 80 112
|
syl3anc |
|
| 114 |
108 113
|
fssresd |
|
| 115 |
7 80 81 92 104 105 107 114
|
rami |
|
| 116 |
|
equequ1 |
|
| 117 |
|
fveq2 |
|
| 118 |
116 117
|
ifbieq2d |
|
| 119 |
|
ovex |
|
| 120 |
|
fvex |
|
| 121 |
119 120
|
ifex |
|
| 122 |
118 91 121
|
fvmpt |
|
| 123 |
122
|
ad2antrl |
|
| 124 |
123
|
breq1d |
|
| 125 |
124
|
anbi1d |
|
| 126 |
1
|
ad2antrr |
|
| 127 |
2
|
ad2antrr |
|
| 128 |
3
|
ad2antrr |
|
| 129 |
5
|
ad2antrr |
|
| 130 |
6
|
ad2antrr |
|
| 131 |
8
|
ad2antrr |
|
| 132 |
9
|
ad2antrr |
|
| 133 |
10
|
ad2antrr |
|
| 134 |
11
|
ad2antrr |
|
| 135 |
83
|
adantr |
|
| 136 |
110
|
adantr |
|
| 137 |
106
|
adantr |
|
| 138 |
|
simprrr |
|
| 139 |
138
|
adantr |
|
| 140 |
|
simprll |
|
| 141 |
|
simprlr |
|
| 142 |
141
|
elpwid |
|
| 143 |
|
simprrl |
|
| 144 |
|
simprrr |
|
| 145 |
|
cnvresima |
|
| 146 |
|
inss1 |
|
| 147 |
145 146
|
eqsstri |
|
| 148 |
144 147
|
sstrdi |
|
| 149 |
126 127 128 4 129 130 7 131 132 133 134 12 135 136 137 139 140 142 143 148
|
ramub1lem1 |
|
| 150 |
149
|
expr |
|
| 151 |
125 150
|
sylbid |
|
| 152 |
151
|
anassrs |
|
| 153 |
152
|
rexlimdva |
|
| 154 |
153
|
reximdva |
|
| 155 |
115 154
|
mpd |
|
| 156 |
155
|
expr |
|
| 157 |
156
|
rexlimdvva |
|
| 158 |
79 157
|
mpd |
|