Metamath Proof Explorer


Theorem ramubcl

Description: If the Ramsey number is upper bounded, then it is an integer. (Contributed by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion ramubcl M 0 R V F : R 0 A 0 M Ramsey F A M Ramsey F 0

Proof

Step Hyp Ref Expression
1 nn0re A 0 A
2 ltpnf A A < +∞
3 rexr A A *
4 pnfxr +∞ *
5 xrltnle A * +∞ * A < +∞ ¬ +∞ A
6 3 4 5 sylancl A A < +∞ ¬ +∞ A
7 2 6 mpbid A ¬ +∞ A
8 1 7 syl A 0 ¬ +∞ A
9 8 ad2antrl M 0 R V F : R 0 A 0 M Ramsey F A ¬ +∞ A
10 simprr M 0 R V F : R 0 A 0 M Ramsey F A M Ramsey F A
11 breq1 M Ramsey F = +∞ M Ramsey F A +∞ A
12 10 11 syl5ibcom M 0 R V F : R 0 A 0 M Ramsey F A M Ramsey F = +∞ +∞ A
13 9 12 mtod M 0 R V F : R 0 A 0 M Ramsey F A ¬ M Ramsey F = +∞
14 elsni M Ramsey F +∞ M Ramsey F = +∞
15 13 14 nsyl M 0 R V F : R 0 A 0 M Ramsey F A ¬ M Ramsey F +∞
16 ramcl2 M 0 R V F : R 0 M Ramsey F 0 +∞
17 16 adantr M 0 R V F : R 0 A 0 M Ramsey F A M Ramsey F 0 +∞
18 elun M Ramsey F 0 +∞ M Ramsey F 0 M Ramsey F +∞
19 17 18 sylib M 0 R V F : R 0 A 0 M Ramsey F A M Ramsey F 0 M Ramsey F +∞
20 19 ord M 0 R V F : R 0 A 0 M Ramsey F A ¬ M Ramsey F 0 M Ramsey F +∞
21 15 20 mt3d M 0 R V F : R 0 A 0 M Ramsey F A M Ramsey F 0