Metamath Proof Explorer


Theorem ramxrcl

Description: The Ramsey number is an extended real number. (This theorem does not imply Ramsey's theorem, unlike ramcl .) (Contributed by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion ramxrcl M 0 R V F : R 0 M Ramsey F *

Proof

Step Hyp Ref Expression
1 nn0ssre 0
2 ressxr *
3 1 2 sstri 0 *
4 pnfxr +∞ *
5 snssi +∞ * +∞ *
6 4 5 ax-mp +∞ *
7 3 6 unssi 0 +∞ *
8 ramcl2 M 0 R V F : R 0 M Ramsey F 0 +∞
9 7 8 sselid M 0 R V F : R 0 M Ramsey F *