Metamath Proof Explorer


Theorem ramz

Description: The Ramsey number when F is the zero function. (Contributed by Mario Carneiro, 22-Apr-2015)

Ref Expression
Assertion ramz M 0 R V R M Ramsey R × 0 = 0

Proof

Step Hyp Ref Expression
1 elnn0 M 0 M M = 0
2 n0 R c c R
3 simpll M R V c R M
4 simplr M R V c R R V
5 0nn0 0 0
6 5 fconst6 R × 0 : R 0
7 6 a1i M R V c R R × 0 : R 0
8 simpr M R V c R c R
9 fvconst2g 0 0 c R R × 0 c = 0
10 5 8 9 sylancr M R V c R R × 0 c = 0
11 ramz2 M R V R × 0 : R 0 c R R × 0 c = 0 M Ramsey R × 0 = 0
12 3 4 7 8 10 11 syl32anc M R V c R M Ramsey R × 0 = 0
13 12 ex M R V c R M Ramsey R × 0 = 0
14 13 exlimdv M R V c c R M Ramsey R × 0 = 0
15 2 14 syl5bi M R V R M Ramsey R × 0 = 0
16 15 expimpd M R V R M Ramsey R × 0 = 0
17 simpl R V R R V
18 simpr R V R R
19 6 a1i R V R R × 0 : R 0
20 0z 0
21 elsni y 0 y = 0
22 0le0 0 0
23 21 22 eqbrtrdi y 0 y 0
24 23 rgen y 0 y 0
25 rnxp R ran R × 0 = 0
26 25 adantl R V R ran R × 0 = 0
27 26 raleqdv R V R y ran R × 0 y 0 y 0 y 0
28 24 27 mpbiri R V R y ran R × 0 y 0
29 brralrspcev 0 y ran R × 0 y 0 x y ran R × 0 y x
30 20 28 29 sylancr R V R x y ran R × 0 y x
31 0ram R V R R × 0 : R 0 x y ran R × 0 y x 0 Ramsey R × 0 = sup ran R × 0 <
32 17 18 19 30 31 syl31anc R V R 0 Ramsey R × 0 = sup ran R × 0 <
33 26 supeq1d R V R sup ran R × 0 < = sup 0 <
34 ltso < Or
35 0re 0
36 supsn < Or 0 sup 0 < = 0
37 34 35 36 mp2an sup 0 < = 0
38 37 a1i R V R sup 0 < = 0
39 32 33 38 3eqtrd R V R 0 Ramsey R × 0 = 0
40 oveq1 M = 0 M Ramsey R × 0 = 0 Ramsey R × 0
41 40 eqeq1d M = 0 M Ramsey R × 0 = 0 0 Ramsey R × 0 = 0
42 39 41 syl5ibr M = 0 R V R M Ramsey R × 0 = 0
43 16 42 jaoi M M = 0 R V R M Ramsey R × 0 = 0
44 1 43 sylbi M 0 R V R M Ramsey R × 0 = 0
45 44 3impib M 0 R V R M Ramsey R × 0 = 0