Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
|
simpl1 |
|
3 |
2
|
nnnn0d |
|
4 |
|
simpl2 |
|
5 |
|
simpl3 |
|
6 |
|
0nn0 |
|
7 |
6
|
a1i |
|
8 |
|
simplrl |
|
9 |
|
0elpw |
|
10 |
9
|
a1i |
|
11 |
|
simplrr |
|
12 |
|
0le0 |
|
13 |
11 12
|
eqbrtrdi |
|
14 |
|
simpll1 |
|
15 |
1
|
0hashbc |
|
16 |
14 15
|
syl |
|
17 |
|
0ss |
|
18 |
16 17
|
eqsstrdi |
|
19 |
|
fveq2 |
|
20 |
19
|
breq1d |
|
21 |
|
sneq |
|
22 |
21
|
imaeq2d |
|
23 |
22
|
sseq2d |
|
24 |
20 23
|
anbi12d |
|
25 |
|
fveq2 |
|
26 |
|
hash0 |
|
27 |
25 26
|
eqtrdi |
|
28 |
27
|
breq2d |
|
29 |
|
oveq1 |
|
30 |
29
|
sseq1d |
|
31 |
28 30
|
anbi12d |
|
32 |
24 31
|
rspc2ev |
|
33 |
8 10 13 18 32
|
syl112anc |
|
34 |
1 3 4 5 7 33
|
ramub |
|
35 |
|
ramubcl |
|
36 |
3 4 5 7 34 35
|
syl32anc |
|
37 |
|
nn0le0eq0 |
|
38 |
36 37
|
syl |
|
39 |
34 38
|
mpbid |
|