Metamath Proof Explorer


Theorem ramz2

Description: The Ramsey number when F has value zero for some color C . (Contributed by Mario Carneiro, 22-Apr-2015)

Ref Expression
Assertion ramz2 M R V F : R 0 C R F C = 0 M Ramsey F = 0

Proof

Step Hyp Ref Expression
1 eqid a V , i 0 b 𝒫 a | b = i = a V , i 0 b 𝒫 a | b = i
2 simpl1 M R V F : R 0 C R F C = 0 M
3 2 nnnn0d M R V F : R 0 C R F C = 0 M 0
4 simpl2 M R V F : R 0 C R F C = 0 R V
5 simpl3 M R V F : R 0 C R F C = 0 F : R 0
6 0nn0 0 0
7 6 a1i M R V F : R 0 C R F C = 0 0 0
8 simplrl M R V F : R 0 C R F C = 0 0 s f : s a V , i 0 b 𝒫 a | b = i M R C R
9 0elpw 𝒫 s
10 9 a1i M R V F : R 0 C R F C = 0 0 s f : s a V , i 0 b 𝒫 a | b = i M R 𝒫 s
11 simplrr M R V F : R 0 C R F C = 0 0 s f : s a V , i 0 b 𝒫 a | b = i M R F C = 0
12 0le0 0 0
13 11 12 eqbrtrdi M R V F : R 0 C R F C = 0 0 s f : s a V , i 0 b 𝒫 a | b = i M R F C 0
14 simpll1 M R V F : R 0 C R F C = 0 0 s f : s a V , i 0 b 𝒫 a | b = i M R M
15 1 0hashbc M a V , i 0 b 𝒫 a | b = i M =
16 14 15 syl M R V F : R 0 C R F C = 0 0 s f : s a V , i 0 b 𝒫 a | b = i M R a V , i 0 b 𝒫 a | b = i M =
17 0ss f -1 C
18 16 17 eqsstrdi M R V F : R 0 C R F C = 0 0 s f : s a V , i 0 b 𝒫 a | b = i M R a V , i 0 b 𝒫 a | b = i M f -1 C
19 fveq2 c = C F c = F C
20 19 breq1d c = C F c x F C x
21 sneq c = C c = C
22 21 imaeq2d c = C f -1 c = f -1 C
23 22 sseq2d c = C x a V , i 0 b 𝒫 a | b = i M f -1 c x a V , i 0 b 𝒫 a | b = i M f -1 C
24 20 23 anbi12d c = C F c x x a V , i 0 b 𝒫 a | b = i M f -1 c F C x x a V , i 0 b 𝒫 a | b = i M f -1 C
25 fveq2 x = x =
26 hash0 = 0
27 25 26 eqtrdi x = x = 0
28 27 breq2d x = F C x F C 0
29 oveq1 x = x a V , i 0 b 𝒫 a | b = i M = a V , i 0 b 𝒫 a | b = i M
30 29 sseq1d x = x a V , i 0 b 𝒫 a | b = i M f -1 C a V , i 0 b 𝒫 a | b = i M f -1 C
31 28 30 anbi12d x = F C x x a V , i 0 b 𝒫 a | b = i M f -1 C F C 0 a V , i 0 b 𝒫 a | b = i M f -1 C
32 24 31 rspc2ev C R 𝒫 s F C 0 a V , i 0 b 𝒫 a | b = i M f -1 C c R x 𝒫 s F c x x a V , i 0 b 𝒫 a | b = i M f -1 c
33 8 10 13 18 32 syl112anc M R V F : R 0 C R F C = 0 0 s f : s a V , i 0 b 𝒫 a | b = i M R c R x 𝒫 s F c x x a V , i 0 b 𝒫 a | b = i M f -1 c
34 1 3 4 5 7 33 ramub M R V F : R 0 C R F C = 0 M Ramsey F 0
35 ramubcl M 0 R V F : R 0 0 0 M Ramsey F 0 M Ramsey F 0
36 3 4 5 7 34 35 syl32anc M R V F : R 0 C R F C = 0 M Ramsey F 0
37 nn0le0eq0 M Ramsey F 0 M Ramsey F 0 M Ramsey F = 0
38 36 37 syl M R V F : R 0 C R F C = 0 M Ramsey F 0 M Ramsey F = 0
39 34 38 mpbid M R V F : R 0 C R F C = 0 M Ramsey F = 0